Dynamics of electron-emission currents in plasmonic gaps induced by strong fields

The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2019-05, Vol.214, p.147-157
Hauptverfasser: Aguirregabiria, Garikoitz, Marinica, Dana-Codruta, Ludwig, Markus, Brida, Daniele, Leitenstorfer, Alfred, Aizpurua, Javier, Borisov, Andrey G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the surfaces of the metal nanoparticles across the junction. Further evolution of the electron currents in the gap is governed by the locally enhanced electric fields. The combination of TDDFT and classical modelling of the electron trajectories allows us to study the quiver motion of the electrons in the gap region as a function of the Carrier Envelope Phase (CEP) of the incident pulse. In particular, we demonstrate the role of the quiver motion in establishing the CEP-sensitive net electric transport between nanoparticles. Using a combination of quantum calculations and classical modelling we study the dynamics of strong-field emission currents in plasmonic gaps.
ISSN:1359-6640
1364-5498
DOI:10.1039/c8fd00158h