Direct Analysis of Aqueous Solutions and Untreated Biological Samples Using Nanoelectrospray Ionization Mass Spectrometry with Pipette Tip in Series with High-Ohmic Resistor as Ion Source
Commercially available disposable plastic pipette tip with the inner diameter of ca. 120 μm in series with a high-ohmic resistor (10 GΩ) was adapted as a low-cost alternative ion source for high-throughput nanoelectrospray mass spectrometry (nESI-MS) analysis of a variety of samples, especially aque...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2019-05, Vol.30 (5), p.814-823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Commercially available disposable plastic pipette tip with the inner diameter of ca. 120 μm in series with a high-ohmic resistor (10 GΩ) was adapted as a low-cost alternative ion source for high-throughput nanoelectrospray mass spectrometry (nESI-MS) analysis of a variety of samples, especially aqueous solutions, without sample pretreatment. The use of high-ohmic resistor enabled the formation of stable electrospray of aqueous solutions at ambient conditions. In addition, corona discharge was avoided even with a high voltage applied. Quantitative analysis of vitamin B in water was successfully conducted by tip-ESI. The results exhibited a good linearity (
R
˃ 0.9983), a low detection limit (0.25 ng/mL), and a wide dynamic response range (0.25–1000 ng/mL). Our study revealed that tip-ESI not only performed equally well to capillary nESI in terms of flow rate (˂ 100 nL/min), signal sensitivity, and sample consumption, but also offered a number of additional advantages, including better signal duration, tolerance to high analyte concentration (> 100 μg/mL) and high ionizing voltage (up to 6 kV), and obviation of tip clogging and corona discharge. High compatibility of tip-ESI with various kinds of samples (aqueous, viscous, solid, or bulk biological samples) makes it a promising tool for direct MS analysis. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1007/s13361-019-02142-5 |