Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays

Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-03, Vol.11 (12), p.11568-11578
Hauptverfasser: Hong, Koo Tak, Moon, Cheon Woo, Suh, Jun Min, Lee, Tae Hyung, Kim, Seong-Il, Lee, Sanghan, Jang, Ho Won
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11578
container_issue 12
container_start_page 11568
container_title ACS applied materials & interfaces
container_volume 11
creator Hong, Koo Tak
Moon, Cheon Woo
Suh, Jun Min
Lee, Tae Hyung
Kim, Seong-Il
Lee, Sanghan
Jang, Ho Won
description Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible–near-infrared light in Ag-decorated VO2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Ag-decorated VO2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.
doi_str_mv 10.1021/acsami.8b19490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2188204597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188204597</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-ab6b3f97a1efe8bd629d07f1394075382e54427e4da6f6bdf7e74971251e7d353</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwMqKMCCnFf4mTsWr5qVRgKWwouomd4iqxi51IdOMdeEOehKCUbkznDt850v0QOid4TDAl11B4qPU4yUnKU3yAhl3yMKERPdzfnA_QifdrjGNGcXSMBgwnjAseDdHrDLaVXr014dzItlAyeFANVN-fX3Pj2woa64KlA-N1o60JtAkmq3CmCuug6eAXMCB1WwczbT-0VMEjGOusDCbOwdafoqMSKq_OdjlCz7c3y-l9uHi6m08nixAYw00IeZyzMhVAVKmSXMY0lViUhKUci4glVEWcU6G4hLiMc1kKJXgqCI2IEpJFbIQu-92Ns--t8k1Wa1-oqgKjbOszSpKEYh6lokPHPVo4671TZbZxuga3zQjOfpVmvdJsp7QrXOy227xWco__OeyAqx7oitnats50r_639gMw84Im</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188204597</pqid></control><display><type>article</type><title>Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays</title><source>ACS Publications</source><creator>Hong, Koo Tak ; Moon, Cheon Woo ; Suh, Jun Min ; Lee, Tae Hyung ; Kim, Seong-Il ; Lee, Sanghan ; Jang, Ho Won</creator><creatorcontrib>Hong, Koo Tak ; Moon, Cheon Woo ; Suh, Jun Min ; Lee, Tae Hyung ; Kim, Seong-Il ; Lee, Sanghan ; Jang, Ho Won</creatorcontrib><description>Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible–near-infrared light in Ag-decorated VO2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Ag-decorated VO2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b19490</identifier><identifier>PMID: 30834745</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-03, Vol.11 (12), p.11568-11578</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-ab6b3f97a1efe8bd629d07f1394075382e54427e4da6f6bdf7e74971251e7d353</citedby><cites>FETCH-LOGICAL-a330t-ab6b3f97a1efe8bd629d07f1394075382e54427e4da6f6bdf7e74971251e7d353</cites><orcidid>0000-0002-5807-864X ; 0000-0002-6952-7359 ; 0000-0001-8506-0739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b19490$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b19490$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30834745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Koo Tak</creatorcontrib><creatorcontrib>Moon, Cheon Woo</creatorcontrib><creatorcontrib>Suh, Jun Min</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Kim, Seong-Il</creatorcontrib><creatorcontrib>Lee, Sanghan</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><title>Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible–near-infrared light in Ag-decorated VO2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Ag-decorated VO2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EoqWwMqKMCCnFf4mTsWr5qVRgKWwouomd4iqxi51IdOMdeEOehKCUbkznDt850v0QOid4TDAl11B4qPU4yUnKU3yAhl3yMKERPdzfnA_QifdrjGNGcXSMBgwnjAseDdHrDLaVXr014dzItlAyeFANVN-fX3Pj2woa64KlA-N1o60JtAkmq3CmCuug6eAXMCB1WwczbT-0VMEjGOusDCbOwdafoqMSKq_OdjlCz7c3y-l9uHi6m08nixAYw00IeZyzMhVAVKmSXMY0lViUhKUci4glVEWcU6G4hLiMc1kKJXgqCI2IEpJFbIQu-92Ns--t8k1Wa1-oqgKjbOszSpKEYh6lokPHPVo4671TZbZxuga3zQjOfpVmvdJsp7QrXOy227xWco__OeyAqx7oitnats50r_639gMw84Im</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Hong, Koo Tak</creator><creator>Moon, Cheon Woo</creator><creator>Suh, Jun Min</creator><creator>Lee, Tae Hyung</creator><creator>Kim, Seong-Il</creator><creator>Lee, Sanghan</creator><creator>Jang, Ho Won</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5807-864X</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0001-8506-0739</orcidid></search><sort><creationdate>20190327</creationdate><title>Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays</title><author>Hong, Koo Tak ; Moon, Cheon Woo ; Suh, Jun Min ; Lee, Tae Hyung ; Kim, Seong-Il ; Lee, Sanghan ; Jang, Ho Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-ab6b3f97a1efe8bd629d07f1394075382e54427e4da6f6bdf7e74971251e7d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Koo Tak</creatorcontrib><creatorcontrib>Moon, Cheon Woo</creatorcontrib><creatorcontrib>Suh, Jun Min</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Kim, Seong-Il</creatorcontrib><creatorcontrib>Lee, Sanghan</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Koo Tak</au><au>Moon, Cheon Woo</au><au>Suh, Jun Min</au><au>Lee, Tae Hyung</au><au>Kim, Seong-Il</au><au>Lee, Sanghan</au><au>Jang, Ho Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>11</volume><issue>12</issue><spage>11568</spage><epage>11578</epage><pages>11568-11578</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible–near-infrared light in Ag-decorated VO2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Ag-decorated VO2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30834745</pmid><doi>10.1021/acsami.8b19490</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5807-864X</orcidid><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0001-8506-0739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-03, Vol.11 (12), p.11568-11578
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2188204597
source ACS Publications
title Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daylight-Induced%20Metal%E2%80%93Insulator%20Transition%20in%20Ag-Decorated%20Vanadium%20Dioxide%20Nanorod%20Arrays&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hong,%20Koo%20Tak&rft.date=2019-03-27&rft.volume=11&rft.issue=12&rft.spage=11568&rft.epage=11578&rft.pages=11568-11578&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b19490&rft_dat=%3Cproquest_cross%3E2188204597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188204597&rft_id=info:pmid/30834745&rfr_iscdi=true