Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays

Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-03, Vol.11 (12), p.11568-11578
Hauptverfasser: Hong, Koo Tak, Moon, Cheon Woo, Suh, Jun Min, Lee, Tae Hyung, Kim, Seong-Il, Lee, Sanghan, Jang, Ho Won
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal–insulator transition (MIT) in strongly correlated electronic materials has enormous potential with scientific and technological impacts in future oxide nanoelectronic devices. Although photo-induced MIT can provide opportunities to extend the novel functionality of strongly correlated electronic materials, there have rarely been reports on it. Here, we report MIT provoked by visible–near-infrared light in Ag-decorated VO2 nanorod arrays (NRs) because of localized surface plasmon resonance (LSPR) and its application to broadband photodetectors. Our simulation results based on the finite-difference time-domain method show that the electric field resulting from LSPR can be generated at the interface between Ag nanoparticles and VO2 layers under vis NIR illumination. Using high-resolution transmission electronic microscopy and Raman spectroscopy, we observe the MIT and structural phase transition in the Ag-decorated VO2 NRs due to the LSPR effect. The optoelectronic measurements confirm that high, fast, and broad photoresponse of Ag-decorated VO2 NRs is attributed to photo-induced MIT due to LSPR. Our study will open up a new strategy to trigger MIT in strongly correlated electronic materials through functionalization with plasmonic nanoparticles and serve as a valuable proof of concept for next-generation optoelectronic devices with fast response, low power consumption, and high performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b19490