(2,5-Dioxoimidazolidin-4-ylidene)aminocarbonylcarbamic Acid as a Precursor of Parabanic Acid, the Singlet Oxygen-Specific Oxidation Product of Uric Acid
Previously, we identified that parabanic acid (PA) and its hydrolysate, oxaluric acid (OUA), are the singlet oxygen-specific oxidation products of uric acid (UA). In this study, we investigated the PA formation mechanism by using HPLC and a time-of-flight mass spectrometry technique and identified u...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2019-03, Vol.84 (6), p.3552-3558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previously, we identified that parabanic acid (PA) and its hydrolysate, oxaluric acid (OUA), are the singlet oxygen-specific oxidation products of uric acid (UA). In this study, we investigated the PA formation mechanism by using HPLC and a time-of-flight mass spectrometry technique and identified unknown intermediates as (2,5-dioxoimidazolidin-4-ylidene)aminocarbonylcarbamic acid (DIAA), dehydroallantoin, and 4-hydroxyallantoin (4-HAL). DIAA is the key to PA production, and its formation pathway was characterized using 18O2 and H2 18O. Two oxygen atoms were confirmed to be incorporated into DIAA: the 5-oxo- oxygen from singlet oxygen and the carboxylic oxygen from water. Isolated DIAA and 4-HAL gave PA stoichiometrically. A plausible reaction scheme in which two pathways branch out from DIAA is presented, and the potential for PA as an endogenous probe for biological formation of singlet oxygen is discussed. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.9b00163 |