Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction
Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans we...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2019-06, Vol.81 (6), p.3675-3690 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3690 |
---|---|
container_issue | 6 |
container_start_page | 3675 |
container_title | Magnetic resonance in medicine |
container_volume | 81 |
creator | Ma, Liliana E. Markl, Michael Chow, Kelvin Huh, Hyungkyu Forman, Christoph Vali, Alireza Greiser, Andreas Carr, James Schnell, Susanne Barker, Alex J. Jin, Ning |
description | Purpose
To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min.
Methods
The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution.
Results
CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%).
Conclusion
Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics. |
doi_str_mv | 10.1002/mrm.27684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186152455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197112689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</originalsourceid><addsrcrecordid>eNp1kctu1TAQhq0K1B4Ki74AssQGJNKOncnFy6rcKvWoUgXryHEmyG1ip3ZCdXZs2fGMPAk-PS0LpK5GM_PNP6P5GTsScCwA5MkYxmNZlTXusZUopMxkofAZW0GFkOVC4QF7EeM1AChV4T47yKGGHKBcsV-nPszWcPzA-8Hf8fXVObeOSz5at8wU-RKt-86NH6dAMVLHI7lt6T1P-WSDnn3YpL6bgx-G1Nednmb7g_jNn5-_46QNJdKHjsL9lHZdWjBYty2nsTiHxczWu5fsea-HSK8e4iH79unj17Mv2cXl5_Oz04vMYIGYodJCt2iMalXf9dRJEC2BEJKwzZXIRY2yxhbRVCTrokMhe4A6x76E3GB-yN7udKfgbxeKczPaaGgYtCO_xEaKukxPxKJI6Jv_0Gu_BJeuS5Sq0s6yVol6t6NM8DEG6psp2FGHTSOg2frTJH-ae38S-_pBcWlH6v6Rj4Yk4GQH3NmBNk8rNeur9U7yL_I2m3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197112689</pqid></control><display><type>article</type><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</creator><creatorcontrib>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</creatorcontrib><description>Purpose
To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min.
Methods
The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution.
Results
CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%).
Conclusion
Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27684</identifier><identifier>PMID: 30803006</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>4D flow ; Acceleration ; Adult ; Aorta ; Aorta - diagnostic imaging ; Aorta - physiology ; Blood Flow Velocity - physiology ; cardiovascular ; compressed sensing ; Coronary vessels ; Feasibility studies ; Heart Valve Diseases - diagnostic imaging ; Heart Valve Diseases - physiopathology ; Hemodynamics ; Humans ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; In vitro methods and tests ; Magnetic Resonance Angiography - methods ; Magnetic resonance imaging ; Middle Aged ; Patients ; Phantoms, Imaging ; Temporal resolution ; Thorax ; Young Adult</subject><ispartof>Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3675-3690</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</citedby><cites>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</cites><orcidid>0000-0001-8834-8519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27684$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27684$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30803006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Liliana E.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Chow, Kelvin</creatorcontrib><creatorcontrib>Huh, Hyungkyu</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Vali, Alireza</creatorcontrib><creatorcontrib>Greiser, Andreas</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Schnell, Susanne</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min.
Methods
The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution.
Results
CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%).
Conclusion
Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</description><subject>4D flow</subject><subject>Acceleration</subject><subject>Adult</subject><subject>Aorta</subject><subject>Aorta - diagnostic imaging</subject><subject>Aorta - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>cardiovascular</subject><subject>compressed sensing</subject><subject>Coronary vessels</subject><subject>Feasibility studies</subject><subject>Heart Valve Diseases - diagnostic imaging</subject><subject>Heart Valve Diseases - physiopathology</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vitro methods and tests</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Magnetic resonance imaging</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Temporal resolution</subject><subject>Thorax</subject><subject>Young Adult</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhq0K1B4Ki74AssQGJNKOncnFy6rcKvWoUgXryHEmyG1ip3ZCdXZs2fGMPAk-PS0LpK5GM_PNP6P5GTsScCwA5MkYxmNZlTXusZUopMxkofAZW0GFkOVC4QF7EeM1AChV4T47yKGGHKBcsV-nPszWcPzA-8Hf8fXVObeOSz5at8wU-RKt-86NH6dAMVLHI7lt6T1P-WSDnn3YpL6bgx-G1Nednmb7g_jNn5-_46QNJdKHjsL9lHZdWjBYty2nsTiHxczWu5fsea-HSK8e4iH79unj17Mv2cXl5_Oz04vMYIGYodJCt2iMalXf9dRJEC2BEJKwzZXIRY2yxhbRVCTrokMhe4A6x76E3GB-yN7udKfgbxeKczPaaGgYtCO_xEaKukxPxKJI6Jv_0Gu_BJeuS5Sq0s6yVol6t6NM8DEG6psp2FGHTSOg2frTJH-ae38S-_pBcWlH6v6Rj4Yk4GQH3NmBNk8rNeur9U7yL_I2m3g</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Ma, Liliana E.</creator><creator>Markl, Michael</creator><creator>Chow, Kelvin</creator><creator>Huh, Hyungkyu</creator><creator>Forman, Christoph</creator><creator>Vali, Alireza</creator><creator>Greiser, Andreas</creator><creator>Carr, James</creator><creator>Schnell, Susanne</creator><creator>Barker, Alex J.</creator><creator>Jin, Ning</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8834-8519</orcidid></search><sort><creationdate>201906</creationdate><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><author>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4D flow</topic><topic>Acceleration</topic><topic>Adult</topic><topic>Aorta</topic><topic>Aorta - diagnostic imaging</topic><topic>Aorta - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>cardiovascular</topic><topic>compressed sensing</topic><topic>Coronary vessels</topic><topic>Feasibility studies</topic><topic>Heart Valve Diseases - diagnostic imaging</topic><topic>Heart Valve Diseases - physiopathology</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vitro methods and tests</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Magnetic resonance imaging</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Temporal resolution</topic><topic>Thorax</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Liliana E.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Chow, Kelvin</creatorcontrib><creatorcontrib>Huh, Hyungkyu</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Vali, Alireza</creatorcontrib><creatorcontrib>Greiser, Andreas</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Schnell, Susanne</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Liliana E.</au><au>Markl, Michael</au><au>Chow, Kelvin</au><au>Huh, Hyungkyu</au><au>Forman, Christoph</au><au>Vali, Alireza</au><au>Greiser, Andreas</au><au>Carr, James</au><au>Schnell, Susanne</au><au>Barker, Alex J.</au><au>Jin, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>81</volume><issue>6</issue><spage>3675</spage><epage>3690</epage><pages>3675-3690</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min.
Methods
The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution.
Results
CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%).
Conclusion
Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30803006</pmid><doi>10.1002/mrm.27684</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8834-8519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3675-3690 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2186152455 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 4D flow Acceleration Adult Aorta Aorta - diagnostic imaging Aorta - physiology Blood Flow Velocity - physiology cardiovascular compressed sensing Coronary vessels Feasibility studies Heart Valve Diseases - diagnostic imaging Heart Valve Diseases - physiopathology Hemodynamics Humans Image processing Image reconstruction Imaging, Three-Dimensional - methods In vitro methods and tests Magnetic Resonance Angiography - methods Magnetic resonance imaging Middle Aged Patients Phantoms, Imaging Temporal resolution Thorax Young Adult |
title | Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aortic%204D%20flow%20MRI%20in%202%20minutes%20using%20compressed%20sensing,%20respiratory%20controlled%20adaptive%20k%E2%80%90space%20reordering,%20and%20inline%20reconstruction&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ma,%20Liliana%20E.&rft.date=2019-06&rft.volume=81&rft.issue=6&rft.spage=3675&rft.epage=3690&rft.pages=3675-3690&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27684&rft_dat=%3Cproquest_cross%3E2197112689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197112689&rft_id=info:pmid/30803006&rfr_iscdi=true |