Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction

Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2019-06, Vol.81 (6), p.3675-3690
Hauptverfasser: Ma, Liliana E., Markl, Michael, Chow, Kelvin, Huh, Hyungkyu, Forman, Christoph, Vali, Alireza, Greiser, Andreas, Carr, James, Schnell, Susanne, Barker, Alex J., Jin, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3690
container_issue 6
container_start_page 3675
container_title Magnetic resonance in medicine
container_volume 81
creator Ma, Liliana E.
Markl, Michael
Chow, Kelvin
Huh, Hyungkyu
Forman, Christoph
Vali, Alireza
Greiser, Andreas
Carr, James
Schnell, Susanne
Barker, Alex J.
Jin, Ning
description Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. Results CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%). Conclusion Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.
doi_str_mv 10.1002/mrm.27684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186152455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197112689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</originalsourceid><addsrcrecordid>eNp1kctu1TAQhq0K1B4Ki74AssQGJNKOncnFy6rcKvWoUgXryHEmyG1ip3ZCdXZs2fGMPAk-PS0LpK5GM_PNP6P5GTsScCwA5MkYxmNZlTXusZUopMxkofAZW0GFkOVC4QF7EeM1AChV4T47yKGGHKBcsV-nPszWcPzA-8Hf8fXVObeOSz5at8wU-RKt-86NH6dAMVLHI7lt6T1P-WSDnn3YpL6bgx-G1Nednmb7g_jNn5-_46QNJdKHjsL9lHZdWjBYty2nsTiHxczWu5fsea-HSK8e4iH79unj17Mv2cXl5_Oz04vMYIGYodJCt2iMalXf9dRJEC2BEJKwzZXIRY2yxhbRVCTrokMhe4A6x76E3GB-yN7udKfgbxeKczPaaGgYtCO_xEaKukxPxKJI6Jv_0Gu_BJeuS5Sq0s6yVol6t6NM8DEG6psp2FGHTSOg2frTJH-ae38S-_pBcWlH6v6Rj4Yk4GQH3NmBNk8rNeur9U7yL_I2m3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197112689</pqid></control><display><type>article</type><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</creator><creatorcontrib>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</creatorcontrib><description>Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. Results CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with &gt;70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%). Conclusion Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27684</identifier><identifier>PMID: 30803006</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>4D flow ; Acceleration ; Adult ; Aorta ; Aorta - diagnostic imaging ; Aorta - physiology ; Blood Flow Velocity - physiology ; cardiovascular ; compressed sensing ; Coronary vessels ; Feasibility studies ; Heart Valve Diseases - diagnostic imaging ; Heart Valve Diseases - physiopathology ; Hemodynamics ; Humans ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; In vitro methods and tests ; Magnetic Resonance Angiography - methods ; Magnetic resonance imaging ; Middle Aged ; Patients ; Phantoms, Imaging ; Temporal resolution ; Thorax ; Young Adult</subject><ispartof>Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3675-3690</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</citedby><cites>FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</cites><orcidid>0000-0001-8834-8519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27684$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27684$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30803006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Liliana E.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Chow, Kelvin</creatorcontrib><creatorcontrib>Huh, Hyungkyu</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Vali, Alireza</creatorcontrib><creatorcontrib>Greiser, Andreas</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Schnell, Susanne</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. Results CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with &gt;70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%). Conclusion Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</description><subject>4D flow</subject><subject>Acceleration</subject><subject>Adult</subject><subject>Aorta</subject><subject>Aorta - diagnostic imaging</subject><subject>Aorta - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>cardiovascular</subject><subject>compressed sensing</subject><subject>Coronary vessels</subject><subject>Feasibility studies</subject><subject>Heart Valve Diseases - diagnostic imaging</subject><subject>Heart Valve Diseases - physiopathology</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vitro methods and tests</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Magnetic resonance imaging</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Temporal resolution</subject><subject>Thorax</subject><subject>Young Adult</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhq0K1B4Ki74AssQGJNKOncnFy6rcKvWoUgXryHEmyG1ip3ZCdXZs2fGMPAk-PS0LpK5GM_PNP6P5GTsScCwA5MkYxmNZlTXusZUopMxkofAZW0GFkOVC4QF7EeM1AChV4T47yKGGHKBcsV-nPszWcPzA-8Hf8fXVObeOSz5at8wU-RKt-86NH6dAMVLHI7lt6T1P-WSDnn3YpL6bgx-G1Nednmb7g_jNn5-_46QNJdKHjsL9lHZdWjBYty2nsTiHxczWu5fsea-HSK8e4iH79unj17Mv2cXl5_Oz04vMYIGYodJCt2iMalXf9dRJEC2BEJKwzZXIRY2yxhbRVCTrokMhe4A6x76E3GB-yN7udKfgbxeKczPaaGgYtCO_xEaKukxPxKJI6Jv_0Gu_BJeuS5Sq0s6yVol6t6NM8DEG6psp2FGHTSOg2frTJH-ae38S-_pBcWlH6v6Rj4Yk4GQH3NmBNk8rNeur9U7yL_I2m3g</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Ma, Liliana E.</creator><creator>Markl, Michael</creator><creator>Chow, Kelvin</creator><creator>Huh, Hyungkyu</creator><creator>Forman, Christoph</creator><creator>Vali, Alireza</creator><creator>Greiser, Andreas</creator><creator>Carr, James</creator><creator>Schnell, Susanne</creator><creator>Barker, Alex J.</creator><creator>Jin, Ning</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8834-8519</orcidid></search><sort><creationdate>201906</creationdate><title>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</title><author>Ma, Liliana E. ; Markl, Michael ; Chow, Kelvin ; Huh, Hyungkyu ; Forman, Christoph ; Vali, Alireza ; Greiser, Andreas ; Carr, James ; Schnell, Susanne ; Barker, Alex J. ; Jin, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-49a1ab4cc9b9fdfed201be0112e4b3913184284b44c7e285d412f00834f603c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4D flow</topic><topic>Acceleration</topic><topic>Adult</topic><topic>Aorta</topic><topic>Aorta - diagnostic imaging</topic><topic>Aorta - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>cardiovascular</topic><topic>compressed sensing</topic><topic>Coronary vessels</topic><topic>Feasibility studies</topic><topic>Heart Valve Diseases - diagnostic imaging</topic><topic>Heart Valve Diseases - physiopathology</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vitro methods and tests</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Magnetic resonance imaging</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Temporal resolution</topic><topic>Thorax</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Liliana E.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><creatorcontrib>Chow, Kelvin</creatorcontrib><creatorcontrib>Huh, Hyungkyu</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Vali, Alireza</creatorcontrib><creatorcontrib>Greiser, Andreas</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Schnell, Susanne</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Jin, Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Liliana E.</au><au>Markl, Michael</au><au>Chow, Kelvin</au><au>Huh, Hyungkyu</au><au>Forman, Christoph</au><au>Vali, Alireza</au><au>Greiser, Andreas</au><au>Carr, James</au><au>Schnell, Susanne</au><au>Barker, Alex J.</au><au>Jin, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>81</volume><issue>6</issue><spage>3675</spage><epage>3690</epage><pages>3675-3690</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To evaluate the accuracy and feasibility of a free‐breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. Methods The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4–14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS‐accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. Results CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with &gt;70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel‐by‐voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax) and peak flow (Qmax) in both volunteers and patients (volunteers: vmax, −16.2% to −9.4%, Qmax: −11.6% to −2.9%, patients: vmax, −11.2% to −4.0%; Qmax, −10.2% to −5.8%). Conclusion Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax; however, these were generally within 13% of conventional 4D flow‐derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30803006</pmid><doi>10.1002/mrm.27684</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8834-8519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3675-3690
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2186152455
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 4D flow
Acceleration
Adult
Aorta
Aorta - diagnostic imaging
Aorta - physiology
Blood Flow Velocity - physiology
cardiovascular
compressed sensing
Coronary vessels
Feasibility studies
Heart Valve Diseases - diagnostic imaging
Heart Valve Diseases - physiopathology
Hemodynamics
Humans
Image processing
Image reconstruction
Imaging, Three-Dimensional - methods
In vitro methods and tests
Magnetic Resonance Angiography - methods
Magnetic resonance imaging
Middle Aged
Patients
Phantoms, Imaging
Temporal resolution
Thorax
Young Adult
title Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k‐space reordering, and inline reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aortic%204D%20flow%20MRI%20in%202%20minutes%20using%20compressed%20sensing,%20respiratory%20controlled%20adaptive%20k%E2%80%90space%20reordering,%20and%20inline%20reconstruction&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ma,%20Liliana%20E.&rft.date=2019-06&rft.volume=81&rft.issue=6&rft.spage=3675&rft.epage=3690&rft.pages=3675-3690&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27684&rft_dat=%3Cproquest_cross%3E2197112689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197112689&rft_id=info:pmid/30803006&rfr_iscdi=true