Antioxidants & bronchopulmonary dysplasia: Beating the system or beating a dead horse?

Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25–50% of extremely low birth weight (BW;

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2019-10, Vol.142, p.138-145
Hauptverfasser: Ofman, Gaston, Tipple, Trent E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue
container_start_page 138
container_title Free radical biology & medicine
container_volume 142
creator Ofman, Gaston
Tipple, Trent E.
description Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25–50% of extremely low birth weight (BW;
doi_str_mv 10.1016/j.freeradbiomed.2019.01.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186148694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584918325486</els_id><sourcerecordid>2186148694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c6b1bcf5280b9231d1be7154743b4932b196643c0e60be6d561a45bc62fa818b3</originalsourceid><addsrcrecordid>eNqNkE9vEzEQxS1URNPCV0CWKiEuu3jWXscuhypULSBV4gJcLf-ZJY5218HeIPLt2SjJgVtPI828N0_vR8gNsBoYyA-busuI2QYX04ChbhjomkHNuHpBFqCWvBKtlhdkwZSGqlVCX5KrUjaMMdFy9YpccraUGiQsyM_VOMX0NwY7ToW-oy6n0a_TdtcPabR5T8O-bHtbor2ln9BOcfxFpzXSsi8TDjRl6k5bSwPaQNcpF7x7TV52ti_45jSvyY_Hh-_3X6qnb5-_3q-eKs8VnyovHTjftY1iTjccAjhcQiuWgjuheeNASym4ZyiZQxlaCVa0zsumswqU49fk_fHvNqffOyyTGWLx2Pd2xLQrpgElQSipxSz9eJT6nErJ2JltjsNc0QAzB7BmY_4Daw5gDQMzg53db09BO3e4nb1nkrPg4SjAue6fiNkUH3H0GGJGP5mQ4rOC_gHd05Fn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186148694</pqid></control><display><type>article</type><title>Antioxidants &amp; bronchopulmonary dysplasia: Beating the system or beating a dead horse?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ofman, Gaston ; Tipple, Trent E.</creator><creatorcontrib>Ofman, Gaston ; Tipple, Trent E.</creatorcontrib><description>Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25–50% of extremely low birth weight (BW; &lt;1 kg) infants. Abnormalities in lung function persist into childhood in affected infants and are second only to asthma in terms of childhood respiratory disease healthcare costs. While advances in the medical care of preterm infants have reduced mortality, the incidence of BPD has not decreased in the past 10 years. Reactive oxygen intermediates play a key role in the development of lung disease but, despite promising preclinical therapies, antioxidants have failed to translate into meaningful clinical interventions to decrease the incidence of lung disease in premature infants. In this review we will summarize the state of the art research developments in regards to antioxidants and premature lung disease and discuss the limitations of antioxidant therapies in order to more fully comprehend the reasons why therapeutic antioxidant administration failed to prevent BPD. Finally we will review promising therapeutic strategies and targets. [Display omitted] •Antioxidant therapies have failed to decrease the incidence of bronchopulmonary dysplasia.•Redox signaling is part of normal development of fetal and neonatal lung as well as in lung disease.•Timing, specificity, bioavailability and personalized medicine must be considered for future therapeutic trials to succeed.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2019.01.038</identifier><identifier>PMID: 30769161</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antioxidants - therapeutic use ; Bronchopulmonary Dysplasia - genetics ; Bronchopulmonary Dysplasia - metabolism ; Bronchopulmonary Dysplasia - physiopathology ; Bronchopulmonary Dysplasia - therapy ; Child ; Dietary Supplements ; Glutathione - administration &amp; dosage ; Glutathione - metabolism ; Humans ; Infant, Newborn ; Infant, Premature ; Infant, Very Low Birth Weight ; Intensive Care Units, Neonatal ; Lung - drug effects ; Lung - metabolism ; Lung - physiopathology ; NF-E2-Related Factor 2 - agonists ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Oxidative Stress - drug effects ; Precision Medicine - methods ; Reactive Oxygen Species - antagonists &amp; inhibitors ; Reactive Oxygen Species - metabolism ; Selenium - administration &amp; dosage ; Selenium - metabolism ; Thioredoxins - agonists ; Thioredoxins - genetics ; Thioredoxins - metabolism</subject><ispartof>Free radical biology &amp; medicine, 2019-10, Vol.142, p.138-145</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c6b1bcf5280b9231d1be7154743b4932b196643c0e60be6d561a45bc62fa818b3</citedby><cites>FETCH-LOGICAL-c383t-c6b1bcf5280b9231d1be7154743b4932b196643c0e60be6d561a45bc62fa818b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584918325486$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30769161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ofman, Gaston</creatorcontrib><creatorcontrib>Tipple, Trent E.</creatorcontrib><title>Antioxidants &amp; bronchopulmonary dysplasia: Beating the system or beating a dead horse?</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25–50% of extremely low birth weight (BW; &lt;1 kg) infants. Abnormalities in lung function persist into childhood in affected infants and are second only to asthma in terms of childhood respiratory disease healthcare costs. While advances in the medical care of preterm infants have reduced mortality, the incidence of BPD has not decreased in the past 10 years. Reactive oxygen intermediates play a key role in the development of lung disease but, despite promising preclinical therapies, antioxidants have failed to translate into meaningful clinical interventions to decrease the incidence of lung disease in premature infants. In this review we will summarize the state of the art research developments in regards to antioxidants and premature lung disease and discuss the limitations of antioxidant therapies in order to more fully comprehend the reasons why therapeutic antioxidant administration failed to prevent BPD. Finally we will review promising therapeutic strategies and targets. [Display omitted] •Antioxidant therapies have failed to decrease the incidence of bronchopulmonary dysplasia.•Redox signaling is part of normal development of fetal and neonatal lung as well as in lung disease.•Timing, specificity, bioavailability and personalized medicine must be considered for future therapeutic trials to succeed.</description><subject>Antioxidants - therapeutic use</subject><subject>Bronchopulmonary Dysplasia - genetics</subject><subject>Bronchopulmonary Dysplasia - metabolism</subject><subject>Bronchopulmonary Dysplasia - physiopathology</subject><subject>Bronchopulmonary Dysplasia - therapy</subject><subject>Child</subject><subject>Dietary Supplements</subject><subject>Glutathione - administration &amp; dosage</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Infant, Very Low Birth Weight</subject><subject>Intensive Care Units, Neonatal</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung - physiopathology</subject><subject>NF-E2-Related Factor 2 - agonists</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Precision Medicine - methods</subject><subject>Reactive Oxygen Species - antagonists &amp; inhibitors</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Selenium - administration &amp; dosage</subject><subject>Selenium - metabolism</subject><subject>Thioredoxins - agonists</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - metabolism</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9vEzEQxS1URNPCV0CWKiEuu3jWXscuhypULSBV4gJcLf-ZJY5218HeIPLt2SjJgVtPI828N0_vR8gNsBoYyA-busuI2QYX04ChbhjomkHNuHpBFqCWvBKtlhdkwZSGqlVCX5KrUjaMMdFy9YpccraUGiQsyM_VOMX0NwY7ToW-oy6n0a_TdtcPabR5T8O-bHtbor2ln9BOcfxFpzXSsi8TDjRl6k5bSwPaQNcpF7x7TV52ti_45jSvyY_Hh-_3X6qnb5-_3q-eKs8VnyovHTjftY1iTjccAjhcQiuWgjuheeNASym4ZyiZQxlaCVa0zsumswqU49fk_fHvNqffOyyTGWLx2Pd2xLQrpgElQSipxSz9eJT6nErJ2JltjsNc0QAzB7BmY_4Daw5gDQMzg53db09BO3e4nb1nkrPg4SjAue6fiNkUH3H0GGJGP5mQ4rOC_gHd05Fn</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ofman, Gaston</creator><creator>Tipple, Trent E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Antioxidants &amp; bronchopulmonary dysplasia: Beating the system or beating a dead horse?</title><author>Ofman, Gaston ; Tipple, Trent E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c6b1bcf5280b9231d1be7154743b4932b196643c0e60be6d561a45bc62fa818b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antioxidants - therapeutic use</topic><topic>Bronchopulmonary Dysplasia - genetics</topic><topic>Bronchopulmonary Dysplasia - metabolism</topic><topic>Bronchopulmonary Dysplasia - physiopathology</topic><topic>Bronchopulmonary Dysplasia - therapy</topic><topic>Child</topic><topic>Dietary Supplements</topic><topic>Glutathione - administration &amp; dosage</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Infant, Very Low Birth Weight</topic><topic>Intensive Care Units, Neonatal</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung - physiopathology</topic><topic>NF-E2-Related Factor 2 - agonists</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Precision Medicine - methods</topic><topic>Reactive Oxygen Species - antagonists &amp; inhibitors</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Selenium - administration &amp; dosage</topic><topic>Selenium - metabolism</topic><topic>Thioredoxins - agonists</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ofman, Gaston</creatorcontrib><creatorcontrib>Tipple, Trent E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ofman, Gaston</au><au>Tipple, Trent E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidants &amp; bronchopulmonary dysplasia: Beating the system or beating a dead horse?</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2019-10</date><risdate>2019</risdate><volume>142</volume><spage>138</spage><epage>145</epage><pages>138-145</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Preterm birth is a primary cause of worldwide childhood mortality. Bronchopulmonary dysplasia, characterized by impaired alveolar and lung vascular development, affects 25–50% of extremely low birth weight (BW; &lt;1 kg) infants. Abnormalities in lung function persist into childhood in affected infants and are second only to asthma in terms of childhood respiratory disease healthcare costs. While advances in the medical care of preterm infants have reduced mortality, the incidence of BPD has not decreased in the past 10 years. Reactive oxygen intermediates play a key role in the development of lung disease but, despite promising preclinical therapies, antioxidants have failed to translate into meaningful clinical interventions to decrease the incidence of lung disease in premature infants. In this review we will summarize the state of the art research developments in regards to antioxidants and premature lung disease and discuss the limitations of antioxidant therapies in order to more fully comprehend the reasons why therapeutic antioxidant administration failed to prevent BPD. Finally we will review promising therapeutic strategies and targets. [Display omitted] •Antioxidant therapies have failed to decrease the incidence of bronchopulmonary dysplasia.•Redox signaling is part of normal development of fetal and neonatal lung as well as in lung disease.•Timing, specificity, bioavailability and personalized medicine must be considered for future therapeutic trials to succeed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30769161</pmid><doi>10.1016/j.freeradbiomed.2019.01.038</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2019-10, Vol.142, p.138-145
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_2186148694
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Antioxidants - therapeutic use
Bronchopulmonary Dysplasia - genetics
Bronchopulmonary Dysplasia - metabolism
Bronchopulmonary Dysplasia - physiopathology
Bronchopulmonary Dysplasia - therapy
Child
Dietary Supplements
Glutathione - administration & dosage
Glutathione - metabolism
Humans
Infant, Newborn
Infant, Premature
Infant, Very Low Birth Weight
Intensive Care Units, Neonatal
Lung - drug effects
Lung - metabolism
Lung - physiopathology
NF-E2-Related Factor 2 - agonists
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Oxidative Stress - drug effects
Precision Medicine - methods
Reactive Oxygen Species - antagonists & inhibitors
Reactive Oxygen Species - metabolism
Selenium - administration & dosage
Selenium - metabolism
Thioredoxins - agonists
Thioredoxins - genetics
Thioredoxins - metabolism
title Antioxidants & bronchopulmonary dysplasia: Beating the system or beating a dead horse?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidants%20&%20bronchopulmonary%20dysplasia:%20Beating%20the%20system%20or%20beating%20a%20dead%20horse?&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Ofman,%20Gaston&rft.date=2019-10&rft.volume=142&rft.spage=138&rft.epage=145&rft.pages=138-145&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2019.01.038&rft_dat=%3Cproquest_cross%3E2186148694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186148694&rft_id=info:pmid/30769161&rft_els_id=S0891584918325486&rfr_iscdi=true