Pathophysiology, causes and genetics of paediatric and adult bronchiectasis
ABSTRACT Bronchiectasis has historically been considered to be irreversible dilatation of the airways, but with modern imaging techniques it has been proposed that ‘irreversible’ be dropped from the definition. The upper limit of normal for the ratio of airway to arterial development increases with...
Gespeichert in:
Veröffentlicht in: | Respirology (Carlton, Vic.) Vic.), 2019-11, Vol.24 (11), p.1053-1062 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Bronchiectasis has historically been considered to be irreversible dilatation of the airways, but with modern imaging techniques it has been proposed that ‘irreversible’ be dropped from the definition. The upper limit of normal for the ratio of airway to arterial development increases with age, and a developmental perspective is essential. Bronchiectasis (and persistent bacterial bronchitis, PBB) is a descriptive term and not a diagnosis, and should be the start not the end of the patient's diagnostic journey. PBB, characterized by airway infection and neutrophilic inflammation but without significant airway dilatation may be a precursor of bronchiectasis, and there are many commonalities in the microbiology and the pathology, which are reviewed in this article. A high index of suspicion is essential, and a history of chronic wet or productive cough for more than 4–8 weeks should prompt investigation. There are numerous underlying causes of bronchiectasis, although in many cases no cause is found. Causes include post‐infectious, especially after tuberculosis, adenoviral or pertussis infection; aspiration syndromes; defects in host defence, which may solely affect the airways (cystic fibrosis, not considered in this review, and primary ciliary dyskinesia); and primary ciliary dyskinesia or be systemic, such as common variable immunodeficiency; genetic syndromes; and anatomical defects such as intraluminal airway obstruction (e.g. foreign body), intramural obstruction (e.g. complete cartilage rings) and external airway compression (e.g. by tuberculous lymph nodes). Identification of the underlying cause is important, because some of these conditions have specific treatments and others genetic implications for the family. |
---|---|
ISSN: | 1323-7799 1440-1843 |
DOI: | 10.1111/resp.13509 |