Lytic transglycosylase contributes to the survival of lipooligosaccharide-deficient, colistin-dependent Acinetobacter baumannii
The phenomenon of colistin dependence in Acinetobacter baumannii has been described in a situation in which colistin is now considered as the last resort for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. In this study, we aimed to reveal a gene associated with col...
Gespeichert in:
Veröffentlicht in: | Clinical microbiology and infection 2019-09, Vol.25 (9), p.1156.e1-1156.e7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phenomenon of colistin dependence in Acinetobacter baumannii has been described in a situation in which colistin is now considered as the last resort for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. In this study, we aimed to reveal a gene associated with colistin dependence in A. baumannii.
The colistin-dependent A. baumannii H08-391D strain was isolated from a patient, and target gene-inactivation mutants were constructed. We investigated the effects of target gene on colistin dependence with quantitative real-time PCR and endotoxin assay. Also, we observed the change of cell morphology by electron microscopy.
The expression of ACICU_02898, encoding a soluble lytic transglycosylase associated with cell-wall degradation and recycling, was increased by eight-to 42-fold in colistin-dependent mutants, and deletion of ACICU_02898 in a colistin-dependent strain led to colistin susceptibility (MIC = 8 mg/L). Endotoxin activity was significantly low in a colistin-dependent derivative ACICU_02898-inactivated mutant and a complemented mutant. In addition, the ACICU_02898-inactivated mutant showed a highly reduced growth rate. The colistin-dependent derivative and ACICU_02898-inactivated mutant showed clearly distinguished absorption profiles in the red/green fluorescence dot blot with regard to their membrane potential. Electron microscopy revealed that the deletion mutant cells were elongated compared to the colistin-susceptible wild-type strain and colistin-dependent strain.
A colistin-dependent A. baumannii strain exhibited a deficiency in its outer membrane integrity and high expression of lytic transglycosylase was required for survival. This study reveals why the colistin-dependent mutant can tolerate high antibiotic concentrations. |
---|---|
ISSN: | 1198-743X 1469-0691 |
DOI: | 10.1016/j.cmi.2019.02.004 |