Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions

Genetic analysis of resistance of pepper to bacterial wilt was performed in the doubled haploid progeny from a cross between a resistant parental line PM 687 and a susceptible cultivar Yolo Wonder. After artificial inoculation with a local isolate of Ralstonia solanacearum, the progeny consisting of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2005-05, Vol.89 (5), p.501-506
Hauptverfasser: Lafortune, D, Beramis, M, Daubeze, A.M, Boissot, N, Palloix, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic analysis of resistance of pepper to bacterial wilt was performed in the doubled haploid progeny from a cross between a resistant parental line PM 687 and a susceptible cultivar Yolo Wonder. After artificial inoculation with a local isolate of Ralstonia solanacearum, the progeny consisting of 90 lines was transplanted into a naturally infested field in Guadeloupe, Lesser Antilles. The 2 years of experimentation resulted in repeatable results, with a high heritability of the resistance, attesting the reliability of the evaluation procedure and the stability of the resistance over years. Two to five genes with additive effects were estimated to control the resistance, indicating an oligogenic control as observed in tomato sources of resistance. Relationships with resistance to other soilborne or tropical diseases were examined. Susceptibility to Tobacco mosaic virus (TMV) and to nematodes (Meloidogyne spp.) were significantly linked with resistance to bacterial wilt, whereas neither resistance to Phytophthora capsici nor to Leveillula taurica were linked. The similarity of the genetics of resistance to bacterial wilt in pepper and tomato and linkage with TMV resistance locus warrant the comparative mapping of the resistance quantitative trait loci in the genomes of the two species.
ISSN:0191-2917
1943-7692
DOI:10.1094/pd-89-0501