First report of infection of Lygodium microphyllum by Puccinia lygodii, a potential biocontrol agent of an invasive fern in Florida

Lygodium microphyllum (Cav.) R.Br. (Old World climbing fern), in the family Schizaeaceae, is one of the most invasive (Category I in Florida) weeds in Florida. It has invaded more than 50,000 ha of wetlands and moist habitats in southern Florida and is rapidly spreading in new areas of the Everglade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2005, Vol.89 (1), p.110-110
Hauptverfasser: Rayamajhi, M.B, Pemberton, R.W, Van, T.K, Pratt, P.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lygodium microphyllum (Cav.) R.Br. (Old World climbing fern), in the family Schizaeaceae, is one of the most invasive (Category I in Florida) weeds in Florida. It has invaded more than 50,000 ha of wetlands and moist habitats in southern Florida and is rapidly spreading in new areas of the Everglades (3). The search and evaluation of biocontrol agents for this fern is currently in progress. Puccinia lygodii (Har.) Arth. (Uredinales) (1), previously recorded on L. volubile Sw. and L. venustum Sw. in South America (2), attacks foliage and severely damages L. japonicum Thunb. (Japanese climbing fern) vines in northern and central Florida (4). We hypothesized that since L. japonicum occurred mainly in northern and central Florida, P. lygodii did not have opportunity to interact with L. microphyllum, which primarily occurs in southern Florida. Therefore, we used two inoculation methods to test the possible pathogenicity of P. lygodii on the new host, L. microphyllum. Method-I was designed to imitate a seminatural inoculation technique in which three containerized (0.45-L capacity) L. microphyllum test plants (15- to 30-cm-high sporelings) were intermixed among a group of containerized (5.0-L capacity) P. lygodii-infected L. japonicum plants (source of inoculum) in a glasshouse. In Method-II, uredospores obtained from pustules on diseased L. japonicum foliage were adjusted to 1 × 10 uredospores/ml and then misted on three L. microphyllum sporelings (same size as in Method-I) until foliage was completely wet. The plants were then covered individually with a plastic bag for 3 days to facilitate spore germination and infection. In both methods, three L. japonicum sporelings of similar size as L. microphyllum were intermixed among diseased L. japonicum plants as a positive control. All test and infected plants were placed on 6-cm-high trays filled two-thirds with water and exposed to diffused daylight and a temperature range of 20 to 35°C in a glasshouse. These plants were monitored for the development of rust symptoms (halos and rust pustules) development for 8 weeks. Minute cinnamon flakes that developed into eruptive pustules were seen on the lower surface of the pinnules approximately 42 and 28 days after treatment initiation (in both methods) for L. microphyllum and L. japonicum (positive control), respectively. Each method was repeated twice. Dimensions (29.7 [±3.7] × 23.5 [±2.6] μm) and morphology of urediniospores from pustules on inoculated L. microphyllum
ISSN:0191-2917
1943-7692
DOI:10.1094/PD-89-0110A