In-place bonded semiconductor membranes as compliant substrates for III-V compound devices
Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-02, Vol.11 (8), p.3748-3756 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3756 |
---|---|
container_issue | 8 |
container_start_page | 3748 |
container_title | Nanoscale |
container_volume | 11 |
creator | Garcia, Jr, Ailton J Rodrigues, Leonarde N Covre da Silva, Saimon Filipe Morelhão, Sergio L Couto, Jr, Odilon D D Iikawa, Fernando Deneke, Christoph |
description | Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods. |
doi_str_mv | 10.1039/c8nr08727j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185554439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184779954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</originalsourceid><addsrcrecordid>eNpd0M1KxDAUBeAgijOObnwAKbgRoZomaZMsZRi1MiiIunBT0uQWOrRNTVrBtzfz4yxc5ZL7cbgchM4TfJNgKm-16BwWnPDVAZoSzHBMKSeH-zljE3Ti_QrjTNKMHqMJxZxxSfEUfeZd3DdKQ1TazoCJPLS1DuOoB-uiFtrSqQ58pHykbds3teqGyI-lH5wawn8VVJ7n8cdmbcfORAa-aw3-FB1VqvFwtntn6P1-8TZ_jJcvD_n8bhlrmiZDTKQUOFMgjCGCA5QMZ5SBTJTSpdAsYYRWijJlUpmBgIpqJlOmueFEZqSiM3S1ze2d_RrBD0Vbew1NE-62oy9IItI0ZYzKQC__0ZUdXReuWyvGuQzJQV1vlXbWewdV0bu6Ve6nSHCxbryYi-fXTeNPAV_sIseyBbOnfxXTX8uGe0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184779954</pqid></control><display><type>article</type><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</creator><creatorcontrib>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</creatorcontrib><description>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr08727j</identifier><identifier>PMID: 30747930</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Computational grids ; Doppler effect ; Electronic devices ; Epitaxial growth ; Group III-V semiconductors ; Heterostructures ; Indium gallium arsenides ; Membranes ; Optical activity ; Optoelectronic devices ; Photoluminescence ; Photonics ; Quantum wells ; Red shift ; Substrates ; Thickness ; Thin films</subject><ispartof>Nanoscale, 2019-02, Vol.11 (8), p.3748-3756</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</citedby><cites>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</cites><orcidid>0000-0002-8556-386X ; 0000-0003-1643-0948 ; 0000-0002-1364-2622 ; 0000-0002-8416-3805 ; 0000-0002-0865-7379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30747930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Jr, Ailton J</creatorcontrib><creatorcontrib>Rodrigues, Leonarde N</creatorcontrib><creatorcontrib>Covre da Silva, Saimon Filipe</creatorcontrib><creatorcontrib>Morelhão, Sergio L</creatorcontrib><creatorcontrib>Couto, Jr, Odilon D D</creatorcontrib><creatorcontrib>Iikawa, Fernando</creatorcontrib><creatorcontrib>Deneke, Christoph</creatorcontrib><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</description><subject>Computational grids</subject><subject>Doppler effect</subject><subject>Electronic devices</subject><subject>Epitaxial growth</subject><subject>Group III-V semiconductors</subject><subject>Heterostructures</subject><subject>Indium gallium arsenides</subject><subject>Membranes</subject><subject>Optical activity</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><subject>Photonics</subject><subject>Quantum wells</subject><subject>Red shift</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0M1KxDAUBeAgijOObnwAKbgRoZomaZMsZRi1MiiIunBT0uQWOrRNTVrBtzfz4yxc5ZL7cbgchM4TfJNgKm-16BwWnPDVAZoSzHBMKSeH-zljE3Ti_QrjTNKMHqMJxZxxSfEUfeZd3DdKQ1TazoCJPLS1DuOoB-uiFtrSqQ58pHykbds3teqGyI-lH5wawn8VVJ7n8cdmbcfORAa-aw3-FB1VqvFwtntn6P1-8TZ_jJcvD_n8bhlrmiZDTKQUOFMgjCGCA5QMZ5SBTJTSpdAsYYRWijJlUpmBgIpqJlOmueFEZqSiM3S1ze2d_RrBD0Vbew1NE-62oy9IItI0ZYzKQC__0ZUdXReuWyvGuQzJQV1vlXbWewdV0bu6Ve6nSHCxbryYi-fXTeNPAV_sIseyBbOnfxXTX8uGe0c</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Garcia, Jr, Ailton J</creator><creator>Rodrigues, Leonarde N</creator><creator>Covre da Silva, Saimon Filipe</creator><creator>Morelhão, Sergio L</creator><creator>Couto, Jr, Odilon D D</creator><creator>Iikawa, Fernando</creator><creator>Deneke, Christoph</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8556-386X</orcidid><orcidid>https://orcid.org/0000-0003-1643-0948</orcidid><orcidid>https://orcid.org/0000-0002-1364-2622</orcidid><orcidid>https://orcid.org/0000-0002-8416-3805</orcidid><orcidid>https://orcid.org/0000-0002-0865-7379</orcidid></search><sort><creationdate>20190221</creationdate><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><author>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational grids</topic><topic>Doppler effect</topic><topic>Electronic devices</topic><topic>Epitaxial growth</topic><topic>Group III-V semiconductors</topic><topic>Heterostructures</topic><topic>Indium gallium arsenides</topic><topic>Membranes</topic><topic>Optical activity</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><topic>Photonics</topic><topic>Quantum wells</topic><topic>Red shift</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Jr, Ailton J</creatorcontrib><creatorcontrib>Rodrigues, Leonarde N</creatorcontrib><creatorcontrib>Covre da Silva, Saimon Filipe</creatorcontrib><creatorcontrib>Morelhão, Sergio L</creatorcontrib><creatorcontrib>Couto, Jr, Odilon D D</creatorcontrib><creatorcontrib>Iikawa, Fernando</creatorcontrib><creatorcontrib>Deneke, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Jr, Ailton J</au><au>Rodrigues, Leonarde N</au><au>Covre da Silva, Saimon Filipe</au><au>Morelhão, Sergio L</au><au>Couto, Jr, Odilon D D</au><au>Iikawa, Fernando</au><au>Deneke, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-02-21</date><risdate>2019</risdate><volume>11</volume><issue>8</issue><spage>3748</spage><epage>3756</epage><pages>3748-3756</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30747930</pmid><doi>10.1039/c8nr08727j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8556-386X</orcidid><orcidid>https://orcid.org/0000-0003-1643-0948</orcidid><orcidid>https://orcid.org/0000-0002-1364-2622</orcidid><orcidid>https://orcid.org/0000-0002-8416-3805</orcidid><orcidid>https://orcid.org/0000-0002-0865-7379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-02, Vol.11 (8), p.3748-3756 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2185554439 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Computational grids Doppler effect Electronic devices Epitaxial growth Group III-V semiconductors Heterostructures Indium gallium arsenides Membranes Optical activity Optoelectronic devices Photoluminescence Photonics Quantum wells Red shift Substrates Thickness Thin films |
title | In-place bonded semiconductor membranes as compliant substrates for III-V compound devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-place%20bonded%20semiconductor%20membranes%20as%20compliant%20substrates%20for%20III-V%20compound%20devices&rft.jtitle=Nanoscale&rft.au=Garcia,%20Jr,%20Ailton%20J&rft.date=2019-02-21&rft.volume=11&rft.issue=8&rft.spage=3748&rft.epage=3756&rft.pages=3748-3756&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr08727j&rft_dat=%3Cproquest_cross%3E2184779954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184779954&rft_id=info:pmid/30747930&rfr_iscdi=true |