In-place bonded semiconductor membranes as compliant substrates for III-V compound devices

Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-02, Vol.11 (8), p.3748-3756
Hauptverfasser: Garcia, Jr, Ailton J, Rodrigues, Leonarde N, Covre da Silva, Saimon Filipe, Morelhão, Sergio L, Couto, Jr, Odilon D D, Iikawa, Fernando, Deneke, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3756
container_issue 8
container_start_page 3748
container_title Nanoscale
container_volume 11
creator Garcia, Jr, Ailton J
Rodrigues, Leonarde N
Covre da Silva, Saimon Filipe
Morelhão, Sergio L
Couto, Jr, Odilon D D
Iikawa, Fernando
Deneke, Christoph
description Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.
doi_str_mv 10.1039/c8nr08727j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2185554439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184779954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</originalsourceid><addsrcrecordid>eNpd0M1KxDAUBeAgijOObnwAKbgRoZomaZMsZRi1MiiIunBT0uQWOrRNTVrBtzfz4yxc5ZL7cbgchM4TfJNgKm-16BwWnPDVAZoSzHBMKSeH-zljE3Ti_QrjTNKMHqMJxZxxSfEUfeZd3DdKQ1TazoCJPLS1DuOoB-uiFtrSqQ58pHykbds3teqGyI-lH5wawn8VVJ7n8cdmbcfORAa-aw3-FB1VqvFwtntn6P1-8TZ_jJcvD_n8bhlrmiZDTKQUOFMgjCGCA5QMZ5SBTJTSpdAsYYRWijJlUpmBgIpqJlOmueFEZqSiM3S1ze2d_RrBD0Vbew1NE-62oy9IItI0ZYzKQC__0ZUdXReuWyvGuQzJQV1vlXbWewdV0bu6Ve6nSHCxbryYi-fXTeNPAV_sIseyBbOnfxXTX8uGe0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184779954</pqid></control><display><type>article</type><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</creator><creatorcontrib>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</creatorcontrib><description>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr08727j</identifier><identifier>PMID: 30747930</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Computational grids ; Doppler effect ; Electronic devices ; Epitaxial growth ; Group III-V semiconductors ; Heterostructures ; Indium gallium arsenides ; Membranes ; Optical activity ; Optoelectronic devices ; Photoluminescence ; Photonics ; Quantum wells ; Red shift ; Substrates ; Thickness ; Thin films</subject><ispartof>Nanoscale, 2019-02, Vol.11 (8), p.3748-3756</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</citedby><cites>FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</cites><orcidid>0000-0002-8556-386X ; 0000-0003-1643-0948 ; 0000-0002-1364-2622 ; 0000-0002-8416-3805 ; 0000-0002-0865-7379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30747930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Jr, Ailton J</creatorcontrib><creatorcontrib>Rodrigues, Leonarde N</creatorcontrib><creatorcontrib>Covre da Silva, Saimon Filipe</creatorcontrib><creatorcontrib>Morelhão, Sergio L</creatorcontrib><creatorcontrib>Couto, Jr, Odilon D D</creatorcontrib><creatorcontrib>Iikawa, Fernando</creatorcontrib><creatorcontrib>Deneke, Christoph</creatorcontrib><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</description><subject>Computational grids</subject><subject>Doppler effect</subject><subject>Electronic devices</subject><subject>Epitaxial growth</subject><subject>Group III-V semiconductors</subject><subject>Heterostructures</subject><subject>Indium gallium arsenides</subject><subject>Membranes</subject><subject>Optical activity</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><subject>Photonics</subject><subject>Quantum wells</subject><subject>Red shift</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0M1KxDAUBeAgijOObnwAKbgRoZomaZMsZRi1MiiIunBT0uQWOrRNTVrBtzfz4yxc5ZL7cbgchM4TfJNgKm-16BwWnPDVAZoSzHBMKSeH-zljE3Ti_QrjTNKMHqMJxZxxSfEUfeZd3DdKQ1TazoCJPLS1DuOoB-uiFtrSqQ58pHykbds3teqGyI-lH5wawn8VVJ7n8cdmbcfORAa-aw3-FB1VqvFwtntn6P1-8TZ_jJcvD_n8bhlrmiZDTKQUOFMgjCGCA5QMZ5SBTJTSpdAsYYRWijJlUpmBgIpqJlOmueFEZqSiM3S1ze2d_RrBD0Vbew1NE-62oy9IItI0ZYzKQC__0ZUdXReuWyvGuQzJQV1vlXbWewdV0bu6Ve6nSHCxbryYi-fXTeNPAV_sIseyBbOnfxXTX8uGe0c</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Garcia, Jr, Ailton J</creator><creator>Rodrigues, Leonarde N</creator><creator>Covre da Silva, Saimon Filipe</creator><creator>Morelhão, Sergio L</creator><creator>Couto, Jr, Odilon D D</creator><creator>Iikawa, Fernando</creator><creator>Deneke, Christoph</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8556-386X</orcidid><orcidid>https://orcid.org/0000-0003-1643-0948</orcidid><orcidid>https://orcid.org/0000-0002-1364-2622</orcidid><orcidid>https://orcid.org/0000-0002-8416-3805</orcidid><orcidid>https://orcid.org/0000-0002-0865-7379</orcidid></search><sort><creationdate>20190221</creationdate><title>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</title><author>Garcia, Jr, Ailton J ; Rodrigues, Leonarde N ; Covre da Silva, Saimon Filipe ; Morelhão, Sergio L ; Couto, Jr, Odilon D D ; Iikawa, Fernando ; Deneke, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-299806ae8dd287eeb40634e91aacb8c41423fa34ad596e8ef3c4954c7d72962f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational grids</topic><topic>Doppler effect</topic><topic>Electronic devices</topic><topic>Epitaxial growth</topic><topic>Group III-V semiconductors</topic><topic>Heterostructures</topic><topic>Indium gallium arsenides</topic><topic>Membranes</topic><topic>Optical activity</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><topic>Photonics</topic><topic>Quantum wells</topic><topic>Red shift</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Jr, Ailton J</creatorcontrib><creatorcontrib>Rodrigues, Leonarde N</creatorcontrib><creatorcontrib>Covre da Silva, Saimon Filipe</creatorcontrib><creatorcontrib>Morelhão, Sergio L</creatorcontrib><creatorcontrib>Couto, Jr, Odilon D D</creatorcontrib><creatorcontrib>Iikawa, Fernando</creatorcontrib><creatorcontrib>Deneke, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Jr, Ailton J</au><au>Rodrigues, Leonarde N</au><au>Covre da Silva, Saimon Filipe</au><au>Morelhão, Sergio L</au><au>Couto, Jr, Odilon D D</au><au>Iikawa, Fernando</au><au>Deneke, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-place bonded semiconductor membranes as compliant substrates for III-V compound devices</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-02-21</date><risdate>2019</risdate><volume>11</volume><issue>8</issue><spage>3748</spage><epage>3756</epage><pages>3748-3756</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30747930</pmid><doi>10.1039/c8nr08727j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8556-386X</orcidid><orcidid>https://orcid.org/0000-0003-1643-0948</orcidid><orcidid>https://orcid.org/0000-0002-1364-2622</orcidid><orcidid>https://orcid.org/0000-0002-8416-3805</orcidid><orcidid>https://orcid.org/0000-0002-0865-7379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-02, Vol.11 (8), p.3748-3756
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2185554439
source Royal Society Of Chemistry Journals 2008-
subjects Computational grids
Doppler effect
Electronic devices
Epitaxial growth
Group III-V semiconductors
Heterostructures
Indium gallium arsenides
Membranes
Optical activity
Optoelectronic devices
Photoluminescence
Photonics
Quantum wells
Red shift
Substrates
Thickness
Thin films
title In-place bonded semiconductor membranes as compliant substrates for III-V compound devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-place%20bonded%20semiconductor%20membranes%20as%20compliant%20substrates%20for%20III-V%20compound%20devices&rft.jtitle=Nanoscale&rft.au=Garcia,%20Jr,%20Ailton%20J&rft.date=2019-02-21&rft.volume=11&rft.issue=8&rft.spage=3748&rft.epage=3756&rft.pages=3748-3756&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr08727j&rft_dat=%3Cproquest_cross%3E2184779954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184779954&rft_id=info:pmid/30747930&rfr_iscdi=true