In-place bonded semiconductor membranes as compliant substrates for III-V compound devices

Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-02, Vol.11 (8), p.3748-3756
Hauptverfasser: Garcia, Jr, Ailton J, Rodrigues, Leonarde N, Covre da Silva, Saimon Filipe, Morelhão, Sergio L, Couto, Jr, Odilon D D, Iikawa, Fernando, Deneke, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overcoming the critical thickness limit in pseudomorphic growth of lattice mismatched heterostructures is a fundamental challenge in heteroepitaxy. On-demand transfer of light-emitting structures to arbitrary host substrates is an important technological method for optoelectronic and photonic device implementation. The use of freestanding membranes as compliant substrates is a promising approach to address both issues. In this work, the feasibility of using released GaAs/InGaAs/GaAs membranes as virtual substrates to thin films of InGaAs alloys is investigated as a function of the indium content in the films. Growth of flat epitaxial films is demonstrated with critical thickness beyond typical values observed for growth on bulk substrates. Optically active structures are also grown on these membranes with a strong photoluminescence signal and a clear red shift for an InAlGaAs/InGaAs/InAlGaAs quantum well. The red shift is ascribed to strain reduction in the quantum well due to the use of a completely relaxed membrane as the substrate. Our results demonstrate that such membranes constitute a virtual substrate that allows further heterostructure strain engineering, which is not possible when using other post-growth methods.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr08727j