LINGO-1 shRNA Loaded by Pluronic F-127 Promotes Functional Recovery After Ventral Root Avulsion
Spinal root avulsion typically leads to massive motoneuron death and severe functional deficits of the target muscles. Multiple pathological factors such as severe neuron loss, induction of inhibitory molecules, and insufficient regeneration are responsible for the poor functional recovery. Leucine-...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2019-10, Vol.25 (19-20), p.1381-1395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spinal root avulsion typically leads to massive motoneuron death and severe functional deficits of the target muscles. Multiple pathological factors such as severe neuron loss, induction of inhibitory molecules, and insufficient regeneration are responsible for the poor functional recovery. Leucine-rich repeat and immunoglobulin-like domain-containing Nogo receptor-interacting protein 1 (LINGO-1), a central nervous system (CNS)-specific transmembrane protein that is selectively expressed on neurons and oligodendrocytes, serves as a potent negative mediator of axonal regeneration and myelination in CNS injuries and diseases. Although accumulating evidence has demonstrated improvement in axonal regeneration and neurological functions by LINGO-1 antagonism in CNS damage, the possible effects of LINGO-1 in spinal root avulsion remain undiscovered. In this study, a LINGO-1 knockdown strategy using lentiviral vectors encoding LINGO-1 short hairpin interfering RNA (shRNA) delivered by the Pluronic F-127 (PF-127) hydrogel was described after brachial plexus avulsion (BPA). We provide evidence that following BPA and immediate reimplantation, transplantation of LINGO-1 shRNA lentiviral vectors encapsulated by PF-127 rescued the injured motoneurons, enhanced axonal outgrowth and myelination, rebuilt motor endplates, facilitated the reinnervation of terminal muscles, improved angiogenesis, and promoted recovery of avulsed forelimbs. Altogether, these data suggest that delivery of LINGO-1 shRNA by a gel scaffold is a potential therapeutic approach for root avulsion. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2018.0282 |