Wet Chemical Method for Black Phosphorus Thinning and Passivation

Layered black phosphorus (BP) has been expected to be a promising material for future electronic and optoelectronic applications since its discovery. However, the difficulty in mass fabricating layered air-stable BP severely obstructs its potential industry applications. Here, we report a new BP che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-03, Vol.11 (9), p.9213-9222
Hauptverfasser: Fan, Shuangqing, Qiao, JingSi, Lai, Jiawei, Hei, Haicheng, Feng, Zhihong, Zhang, Qiankun, Zhang, Daihua, Wu, Sen, Hu, Xiaodong, Sun, Dong, Ji, Wei, Liu, Jing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Layered black phosphorus (BP) has been expected to be a promising material for future electronic and optoelectronic applications since its discovery. However, the difficulty in mass fabricating layered air-stable BP severely obstructs its potential industry applications. Here, we report a new BP chemical modification method to implement all-solution-based mass production of layered air-stable BP. This method uses the combination of two electron-deficient reagents 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) and triphenylcarbenium tetrafluorobor ([Ph3C]­BF4) to accomplish thinning and/or passivation of BP in organic solvent. The field-effect transistor and photodetection devices constructed from the chemically modified BP flakes exhibit enhanced performances with environmental stability up to 4 months. A proof-of-concept BP thin-film transistor fabricated through the all-solution-based exfoliation and modification displays an air-stable and a typical p-type transistor behavior. This all-solution-based method improves the prospects of BP for industry applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b21655