Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene

Microplastics can have strong sorption capacity for many contaminants, thus greatly influencing the fate, transport and bioavailability of those contaminants in the environment. However, the effect of particle size on contaminant sorption by microplastics is still poorly understood. This study inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2019-05, Vol.173, p.331-338
Hauptverfasser: Wang, Juan, Liu, Xinhui, Liu, Guannan, Zhang, Zixuan, Wu, Hao, Cui, Baoshan, Bai, Junhong, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microplastics can have strong sorption capacity for many contaminants, thus greatly influencing the fate, transport and bioavailability of those contaminants in the environment. However, the effect of particle size on contaminant sorption by microplastics is still poorly understood. This study investigated the sorption of phenanthrene and nitrobenzene to micron-, submicron- and nano- sized polystyrene microplastics of 170 µm, 102 µm, 50 µm, 30 µm, 800 nm, 235 nm or 50 nm. All phenanthrene sorption isotherms and most nitrobenzene sorption isotherms were linear because of the strong sorption capacity of microplastics and the hydrophobic partitioning. The log Kd values ranged between 3.07–4.20 and 1.58–3.14 log (L/kg) for phenanthrene and nitrobenzene, respectively. The log Kd values of phenanthrene and nitrobenzene both increased with decreasing particle size for micron-sized polystyrenes (micro-polystyrene) and submicron-sized polystyrenes (submicro-polystyrene). However, in comparison with 235 nm submicro-polystyrene, the log Kd values of 50 nm nano-polystyrene were significantly lower for phenanthrene and comparable for nitrobenzene because its aggregation greatly reduced the effective surface area accessible for sorption. The results improved our understanding of the fate and risks of microplastics associated with the two typical organic contaminants in the micrometer to nanometer scale. [Display omitted] •Size effect of microplastics on the sorption of contaminants was studied.•Role of polarity in phenanthrene and nitrobenzene sorption was revealed.•Sorption behaviors were altered when microplastics size reduced to nanometer.•Lower sorption capacity was due to the aggregation of nano-sized microplastics.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2019.02.037