Fabrication and characterization of collagen-heparin-polypyrrole composite conductive film for neural scaffold

In this work, a conductive film consisted of polypyrrole-heparin-collagen (PHC film) was fabricated as a potential neural scaffold. Heparin was initially modified with pyrrole, which was further polymerized with pyrrole monomer under the catalysis of ferric trichloride. Then collagen was added and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2019-05, Vol.129, p.895-903
Hauptverfasser: Su, Dandan, Zhou, Juan, Ahmed, Kamel S., Ma, Qiaoqiao, Lv, Guozhong, Chen, Jinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a conductive film consisted of polypyrrole-heparin-collagen (PHC film) was fabricated as a potential neural scaffold. Heparin was initially modified with pyrrole, which was further polymerized with pyrrole monomer under the catalysis of ferric trichloride. Then collagen was added and crosslinked through amide bond, as well as physical interaction with pyrrole through hydrogen bond. In this system, heparin and collagen contributed to improving the biocompatibility, because they were the major component of the extracellular matrix. Additionally, heparin was verified to promote nerve cells growth. The physicochemical properties of PHC film were verified, including structure, morphological analysis, degradation, swelling, electrical properties and so on. Combined with the promotion results of pheochromocytoma cells growing, this PHC film is expected to be a promising alternative for nerve regeneration.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.02.087