Numerical Study of Incomplete Stent Apposition Caused by Deploying Undersized Stent in Arteries With Elliptical Cross Sections

Incomplete stent apposition (ISA) is one of the causes leading to poststent complications, which can be found when an undersized or an underexpanded stent is deployed at lesions. The previous research efforts have focused on ISA in idealized coronary arterial geometry with circular cross section. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2019-05, Vol.141 (5)
Hauptverfasser: Jiang, Bo, Thondapu, Vikas, Poon, Eric K. W, Barlis, Peter, Ooi, Andrew S. H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incomplete stent apposition (ISA) is one of the causes leading to poststent complications, which can be found when an undersized or an underexpanded stent is deployed at lesions. The previous research efforts have focused on ISA in idealized coronary arterial geometry with circular cross section. However, arterial cross section eccentricity plays an important role in both location and severity of ISA. Computational fluid dynamics (CFD) simulations are carried out to systematically study the effects of ISA in arteries with elliptical cross section, as such stents are partially embedded on the minor axis sides of the ellipse and malapposed elsewhere. Overall, ISA leads to high time-averaged wall shear stress (TAWSS) at the proximal end of the stent and low TAWSS at the ISA transition region and the distal end. Shear rate depends on both malapposition distance and blood stream locations, which is found to be significantly higher at the inner stent surface than the outer surface. The proximal high shear rate signifies increasing possibility in platelet activation, when coupled with low TAWSS at the transition and distal regions which may indicate a nidus for in-stent thrombosis.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.4042899