Comparative Response of Cardiomyocyte ZIPs and ZnTs to Extracellular Zinc and TPEN

Intracellular zinc concentrations are tightly regulated by the coordinated regulation of ZIPs and ZnTs. Very little is known about the regulation of these transporters in cardiomyocytes, in response to extracellular zinc. Adult rat cardiomyocytes express ZnTs 1, 2, 5, and 9, in addition to ZIPs 1, 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2019-12, Vol.192 (2), p.297-307
Hauptverfasser: Thokala, Sandhya, Bodiga, Vijaya Lakshmi, Kudle, Madhukar Rao, Bodiga, Sreedhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracellular zinc concentrations are tightly regulated by the coordinated regulation of ZIPs and ZnTs. Very little is known about the regulation of these transporters in cardiomyocytes, in response to extracellular zinc. Adult rat cardiomyocytes express ZnTs 1, 2, 5, and 9, in addition to ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14. We have determined the intracellular free zinc levels using Zinpyr-1 fluorescence and studied response of ZIP and ZnT mRNA by real-time PCR to the changes in extracellular zinc and TPEN in adult rat ventricular myocytes. TPEN downregulated ZnT1, ZnT2, and ZIP11 mRNAs but upregulated ZnT5, ZIP2, ZIP7, ZIP10, ZIP13, and ZIP14 mRNAs. Zinc supplementation upregulated ZnT1, ZnT2 mRNA but downregulated ZnT5, ZIP1, ZIP2, ZIP3, ZIP7, ZIP9, and ZIP10 mRNA. The negative regulation of ZIPs by zinc excess can be explained in terms of zinc homeostasis as these transporters may act to protect cells from zinc over accumulation by reducing zinc influx when the extracellular concentration of zinc is high. Similarly, the ZnT expression appears to be regulated to avoid loss of zinc from the intracellular milieu, under zinc-deficient conditions.
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-019-01671-0