Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity
[Display omitted] Multiple viruses can cause infection and death of millions annually. Of these, flaviviruses are found to be highly prevalent in recent years with no distinctive antiviral therapies. Therefore, there is a desperate need for broad-spectrum antiviral drugs that can be active against a...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2019-04, Vol.542, p.198-206 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Multiple viruses can cause infection and death of millions annually. Of these, flaviviruses are found to be highly prevalent in recent years with no distinctive antiviral therapies. Therefore, there is a desperate need for broad-spectrum antiviral drugs that can be active against a large number of existing and emerging viruses. Herein, we prepared a kind of benzoxazine monomer derived carbon dots (BZM-CDs) and demonstrated their infection-blocking ability against life-threatening flaviviruses (Japanese encephalitis, Zika, and dengue viruses) and non-enveloped viruses (porcine parvovirus and adenovirus-associated virus). It was found that BZM-CDs could directly bind to the surface of the virion, and eventually the first step of virus-cell interaction was impeded. The developed nanoparticles are active against both flaviviruses and non-enveloped viruses in vitro. Thus, the application of BZM-CDs may constitute an intriguing broad-spectrum approach to rein in viral infections. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.02.010 |