First Report of Xanthomonas translucens Causing Etiolation on Creeping Bentgrass Turf in Illinois, Kentucky, and North Carolina

Symptoms of etiolation, which is an abnormal elongation and yellowing of tillers, have been observed on creeping bentgrass [Agrostis stolonifera L. (CBG)] putting greens for decades; however, symptoms are typically transient and non-problematic. Reports of etiolation have become more frequent recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2014-06, Vol.98 (6), p.839-839
Hauptverfasser: Roberts, J A, Tredway, L P, Ritchie, D F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symptoms of etiolation, which is an abnormal elongation and yellowing of tillers, have been observed on creeping bentgrass [Agrostis stolonifera L. (CBG)] putting greens for decades; however, symptoms are typically transient and non-problematic. Reports of etiolation have become more frequent recently and research supports the involvement of bacteria (1). During stressful summer periods in 2011 and 2012, 62 CBG putting green samples were submitted to the NCSU Turf Clinic exhibiting symptoms of etiolation, chlorosis, and/or general decline. Microscopic examination of stem and leaf tissue often showed bacterial streaming from the xylem tissue. Symptomatic tissue was surface disinfested in sodium hypochlorite (10% Clorox) for 5 min, blotted dry, and rinsed in sterile dH O. Disinfested tissue was placed in a small drop of sterile dH O on a glass microscope slide and cut to allow bacteria to stream into the water for 2 min. The resulting bacterial suspension was streaked onto three nutrient agar (NA) plates and incubated at 30°C overnight. Bacterial colonies varied in morphology and those present in the greatest number based on morphology were re-streaked to isolate individual colonies. Bacterial isolates were tentatively identified to species using rDNA sequencing of 16S and ITS regions (3). Sequencing results showed isolates obtained from 6 locations (in Illinois, Kentucky, and North Carolina) having a positive match (≥99% 16S and ≥93% ITS) to Xanthomonas translucens (GenBank accessions AY572961, HM181927, JX976312, AY253329, and AB680445). Additional research is needed to confirm pathovar designation as X. translucens isolates were similar to both poae and graminis pathovars. A representative isolate (LW10-12A) was also examined for carbon source utilization using the BIOLOG 3rd Gen Microplate (Biolog Inc., Hayward, CA) resulting in a positive identification of X. translucens. Isolate LW10-12A was used to inoculate 6-week-old seeded creeping bentgrass cv. A1 plants maintained at 1 cm height in 3.5 cm diameter containers. Scissors were dipped in a cell suspension (~10 CFU ml in sterile dH O) and used to cut healthy CBG plants at 1 cm height and the remaining suspension was applied to the foliage until runoff using an atomizer bottle. Non-inoculated plants were cut and misted using sterile dH O. After inoculation, plants were placed in a sealed clear plastic Camwear container (Cambro Co., Huntington Beach, CA) for 48 h and then transferred to the growth chambe
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-05-13-0565-PDN