Techno-economic assessment of coconut biodiesel as a potential alternative fuel for compression ignition engines

Over the past years, there were dramatic improvements in identifying and assessing various feedstocks for the production of biodiesel fuels. To promote a particular feedstock as a renewable source of energy, it is important to analyze their energy, economic, and engine performance characteristics. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2019-03, Vol.26 (9), p.8650-8664
Hauptverfasser: Thangaraja, Jeyaseelan, Srinivasan, Vignesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the past years, there were dramatic improvements in identifying and assessing various feedstocks for the production of biodiesel fuels. To promote a particular feedstock as a renewable source of energy, it is important to analyze their energy, economic, and engine performance characteristics. The current work attempts to evaluate the net energy and economic indices for both fossil diesel and coconut-blended diesel (B20) considering the diesel consumption by the Indian railways. Further, we present the experimental results of a multi-cylinder diesel engine operated with neat coconut biodiesel (B100) and fossil diesel at various load and speed conditions. The engine experiments reveal that the coconut biodiesel exhibits leaner combustion and shorter ignition delay than fossil diesel. Lower amount of carbon monoxide, hydrocarbon, and smoke emission is observed in the case of coconut biodiesel, with higher levels of nitric oxide (14%) and fuel consumption than diesel. The coefficient of variation in indicated mean effective pressure is within the range of better driveability zone for both the fuels at all test conditions. Overall the engine performance, emission and combustion results with neat coconut biodiesel are favorable with a penalty in NO emission at high load conditions. The techno-economical study highlights higher production cost per liter of B20 than the cost of fossil diesel. However, the net energy ratio (NER) for B20 is 1.021, favoring higher output than diesel and thus lowers the dependency on crude oil.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-04096-9