Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide

Microwave-assisted methane reforming with carbon dioxide was dealt with in this work, using a Fe-rich biomass-derived char by one-step preparation. The main factors on the reforming reaction and stability of this catalyst were evaluated, together with a series of characterization on the produced gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-03, Vol.657, p.1357-1367
Hauptverfasser: Li, Longzhi, Yan, Keshuo, Chen, Jian, Feng, Tai, Wang, Fumao, Wang, Jianwei, Song, Zhanlong, Ma, Chunyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microwave-assisted methane reforming with carbon dioxide was dealt with in this work, using a Fe-rich biomass-derived char by one-step preparation. The main factors on the reforming reaction and stability of this catalyst were evaluated, together with a series of characterization on the produced gas and the used char. The char obtained from biomass pyrolysis with Fe2O3 addition of 10% exhibited the best performance on dry reforming reaction. A target CH4 conversion of 95% over this char was realized at 800 °C. Moreover, H2/CO ratio achieved with this char was prone to approach the stoichiometric value. Compared to CO2 conversion, CH4 conversion was more promoted with the increase of CO2/CH4 ratio. The variation of CO2/CH4 ratio also leaded to a noticeable changes on H2/CO ratio. More importantly, the selected char presented a satisfied stability, evidenced by the total decrease of 4.8% for CH4 conversion and 3.1% for CO2 conversion in the test of 160 min. This was contributed to a depressed in-situ carbon consumption and a moderate deterioration of porous structure. Gaseous products obtained with the appropriate char in a long run had a syngas content of 88.79% and H2/CO ratio of 0.92 on average. [Display omitted] •Methane dry reforming was initiated through microwaves.•Fe-supported char catalyst was prepared by one-step method with microwave heating.•This catalyst presented a satisfied stability and it was valuable for practical utilization.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.12.097