Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions

Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry 2019-09, Vol.57 (9), p.707-718
Hauptverfasser: Nelis, Veronique, Declerck, Arnout, Vermeir, Lien, Balcaen, Mathieu, Dewettinck, Koen, Van der Meeren, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 9
container_start_page 707
container_title Magnetic resonance in chemistry
container_volume 57
creator Nelis, Veronique
Declerck, Arnout
Vermeir, Lien
Balcaen, Mathieu
Dewettinck, Koen
Van der Meeren, Paul
description Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil‐based double emulsion and a solid fat‐based double emulsion. Water transport was assessed by low‐resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2‐relaxometry. The solid fat‐based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces. The influence of network crystallization in the oil phase of a W/O/W double emulsion was evaluated by low‐resolution NMR and laser light scattering experiments on both a liquid oil‐based and a solid fat‐based double emulsion. 1H‐NMR diffusometry and T2‐relaxometry showed a reduced water exchange and a slower manganese ion influx, respectively, in case of the solid fat‐based W/O/W emulsion. An osmotically induced swelling or shrinking experiment demonstrated that its globule size remained stable under the applied osmotic gradients.
doi_str_mv 10.1002/mrc.4840
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179460893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2274988156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3490-da50480fb5a5ab4027883b89cb7a8c43ec93007eaf1f62354c9998265de09d563</originalsourceid><addsrcrecordid>eNp1kNFKwzAUQIMoOqfgF0jAF1_qbpq0TXwbw6ngGIiibyFNU6ykzUxaZH9vplNE8CU3cA-Hy0HohMAFAUgnrdcXjDPYQSMCokhYxp930QgKJhKScXKADkN4BQAhCrqPDijkBYn_EVrMVY-1X4de2XCJp7h3zsYHN91LUzY9bp01erDK496rLqyc7-MOP02WkydcuaG0Bpt2sKFxXThCe3X0mOPtHKPH-dXD7Ca5W17fzqZ3iaZMQFKpDBiHusxUpkoGacE5LbnQZaG4ZtRoQQEKo2pS5ynNmBZC8DTPKgOiynI6Rudf3pV3b4MJvWyboI21qjNuCDIlhWA5cEEjevYHfXWD7-J1Mk1jH87Jb6H2LgRvarnyTav8WhKQm8QyJpabxBE93QqHsjXVD_jdNALJF_DeWLP-VyQX97NP4Qf7TYMC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274988156</pqid></control><display><type>article</type><title>Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions</title><source>Access via Wiley Online Library</source><creator>Nelis, Veronique ; Declerck, Arnout ; Vermeir, Lien ; Balcaen, Mathieu ; Dewettinck, Koen ; Van der Meeren, Paul</creator><creatorcontrib>Nelis, Veronique ; Declerck, Arnout ; Vermeir, Lien ; Balcaen, Mathieu ; Dewettinck, Koen ; Van der Meeren, Paul</creatorcontrib><description>Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil‐based double emulsion and a solid fat‐based double emulsion. Water transport was assessed by low‐resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2‐relaxometry. The solid fat‐based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces. The influence of network crystallization in the oil phase of a W/O/W double emulsion was evaluated by low‐resolution NMR and laser light scattering experiments on both a liquid oil‐based and a solid fat‐based double emulsion. 1H‐NMR diffusometry and T2‐relaxometry showed a reduced water exchange and a slower manganese ion influx, respectively, in case of the solid fat‐based W/O/W emulsion. An osmotically induced swelling or shrinking experiment demonstrated that its globule size remained stable under the applied osmotic gradients.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.4840</identifier><identifier>PMID: 30671997</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Crystallization ; Crystals ; Double emulsions ; Emulsions ; fat crystals ; Functional foods &amp; nutraceuticals ; Globules ; Light scattering ; LR‐1H‐NMR diffusometry ; Manganese ions ; molecular transport ; NMR ; Nuclear magnetic resonance ; osmotic pressure ; T2‐relaxometry ; Tortuosity ; Transport ; W/O/W double emulsion</subject><ispartof>Magnetic resonance in chemistry, 2019-09, Vol.57 (9), p.707-718</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3490-da50480fb5a5ab4027883b89cb7a8c43ec93007eaf1f62354c9998265de09d563</citedby><cites>FETCH-LOGICAL-c3490-da50480fb5a5ab4027883b89cb7a8c43ec93007eaf1f62354c9998265de09d563</cites><orcidid>0000-0002-9909-4582 ; 0000-0002-9768-8010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrc.4840$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrc.4840$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30671997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelis, Veronique</creatorcontrib><creatorcontrib>Declerck, Arnout</creatorcontrib><creatorcontrib>Vermeir, Lien</creatorcontrib><creatorcontrib>Balcaen, Mathieu</creatorcontrib><creatorcontrib>Dewettinck, Koen</creatorcontrib><creatorcontrib>Van der Meeren, Paul</creatorcontrib><title>Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions</title><title>Magnetic resonance in chemistry</title><addtitle>Magn Reson Chem</addtitle><description>Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil‐based double emulsion and a solid fat‐based double emulsion. Water transport was assessed by low‐resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2‐relaxometry. The solid fat‐based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces. The influence of network crystallization in the oil phase of a W/O/W double emulsion was evaluated by low‐resolution NMR and laser light scattering experiments on both a liquid oil‐based and a solid fat‐based double emulsion. 1H‐NMR diffusometry and T2‐relaxometry showed a reduced water exchange and a slower manganese ion influx, respectively, in case of the solid fat‐based W/O/W emulsion. An osmotically induced swelling or shrinking experiment demonstrated that its globule size remained stable under the applied osmotic gradients.</description><subject>Crystallization</subject><subject>Crystals</subject><subject>Double emulsions</subject><subject>Emulsions</subject><subject>fat crystals</subject><subject>Functional foods &amp; nutraceuticals</subject><subject>Globules</subject><subject>Light scattering</subject><subject>LR‐1H‐NMR diffusometry</subject><subject>Manganese ions</subject><subject>molecular transport</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>osmotic pressure</subject><subject>T2‐relaxometry</subject><subject>Tortuosity</subject><subject>Transport</subject><subject>W/O/W double emulsion</subject><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUQIMoOqfgF0jAF1_qbpq0TXwbw6ngGIiibyFNU6ykzUxaZH9vplNE8CU3cA-Hy0HohMAFAUgnrdcXjDPYQSMCokhYxp930QgKJhKScXKADkN4BQAhCrqPDijkBYn_EVrMVY-1X4de2XCJp7h3zsYHN91LUzY9bp01erDK496rLqyc7-MOP02WkydcuaG0Bpt2sKFxXThCe3X0mOPtHKPH-dXD7Ca5W17fzqZ3iaZMQFKpDBiHusxUpkoGacE5LbnQZaG4ZtRoQQEKo2pS5ynNmBZC8DTPKgOiynI6Rudf3pV3b4MJvWyboI21qjNuCDIlhWA5cEEjevYHfXWD7-J1Mk1jH87Jb6H2LgRvarnyTav8WhKQm8QyJpabxBE93QqHsjXVD_jdNALJF_DeWLP-VyQX97NP4Qf7TYMC</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Nelis, Veronique</creator><creator>Declerck, Arnout</creator><creator>Vermeir, Lien</creator><creator>Balcaen, Mathieu</creator><creator>Dewettinck, Koen</creator><creator>Van der Meeren, Paul</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9909-4582</orcidid><orcidid>https://orcid.org/0000-0002-9768-8010</orcidid></search><sort><creationdate>201909</creationdate><title>Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions</title><author>Nelis, Veronique ; Declerck, Arnout ; Vermeir, Lien ; Balcaen, Mathieu ; Dewettinck, Koen ; Van der Meeren, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3490-da50480fb5a5ab4027883b89cb7a8c43ec93007eaf1f62354c9998265de09d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystallization</topic><topic>Crystals</topic><topic>Double emulsions</topic><topic>Emulsions</topic><topic>fat crystals</topic><topic>Functional foods &amp; nutraceuticals</topic><topic>Globules</topic><topic>Light scattering</topic><topic>LR‐1H‐NMR diffusometry</topic><topic>Manganese ions</topic><topic>molecular transport</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>osmotic pressure</topic><topic>T2‐relaxometry</topic><topic>Tortuosity</topic><topic>Transport</topic><topic>W/O/W double emulsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelis, Veronique</creatorcontrib><creatorcontrib>Declerck, Arnout</creatorcontrib><creatorcontrib>Vermeir, Lien</creatorcontrib><creatorcontrib>Balcaen, Mathieu</creatorcontrib><creatorcontrib>Dewettinck, Koen</creatorcontrib><creatorcontrib>Van der Meeren, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelis, Veronique</au><au>Declerck, Arnout</au><au>Vermeir, Lien</au><au>Balcaen, Mathieu</au><au>Dewettinck, Koen</au><au>Van der Meeren, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions</atitle><jtitle>Magnetic resonance in chemistry</jtitle><addtitle>Magn Reson Chem</addtitle><date>2019-09</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>707</spage><epage>718</epage><pages>707-718</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil‐based double emulsion and a solid fat‐based double emulsion. Water transport was assessed by low‐resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2‐relaxometry. The solid fat‐based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces. The influence of network crystallization in the oil phase of a W/O/W double emulsion was evaluated by low‐resolution NMR and laser light scattering experiments on both a liquid oil‐based and a solid fat‐based double emulsion. 1H‐NMR diffusometry and T2‐relaxometry showed a reduced water exchange and a slower manganese ion influx, respectively, in case of the solid fat‐based W/O/W emulsion. An osmotically induced swelling or shrinking experiment demonstrated that its globule size remained stable under the applied osmotic gradients.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30671997</pmid><doi>10.1002/mrc.4840</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9909-4582</orcidid><orcidid>https://orcid.org/0000-0002-9768-8010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-1581
ispartof Magnetic resonance in chemistry, 2019-09, Vol.57 (9), p.707-718
issn 0749-1581
1097-458X
language eng
recordid cdi_proquest_miscellaneous_2179460893
source Access via Wiley Online Library
subjects Crystallization
Crystals
Double emulsions
Emulsions
fat crystals
Functional foods & nutraceuticals
Globules
Light scattering
LR‐1H‐NMR diffusometry
Manganese ions
molecular transport
NMR
Nuclear magnetic resonance
osmotic pressure
T2‐relaxometry
Tortuosity
Transport
W/O/W double emulsion
title Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fat%20crystals:%20A%20tool%20to%20inhibit%20molecular%20transport%20in%20W/O/W%20double%20emulsions&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Nelis,%20Veronique&rft.date=2019-09&rft.volume=57&rft.issue=9&rft.spage=707&rft.epage=718&rft.pages=707-718&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.4840&rft_dat=%3Cproquest_cross%3E2274988156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274988156&rft_id=info:pmid/30671997&rfr_iscdi=true