Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions
Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of n...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in chemistry 2019-09, Vol.57 (9), p.707-718 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water‐in‐oil‐in‐water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well‐known problem for liquid oil‐based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil‐based double emulsion and a solid fat‐based double emulsion. Water transport was assessed by low‐resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2‐relaxometry. The solid fat‐based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces.
The influence of network crystallization in the oil phase of a W/O/W double emulsion was evaluated by low‐resolution NMR and laser light scattering experiments on both a liquid oil‐based and a solid fat‐based double emulsion. 1H‐NMR diffusometry and T2‐relaxometry showed a reduced water exchange and a slower manganese ion influx, respectively, in case of the solid fat‐based W/O/W emulsion. An osmotically induced swelling or shrinking experiment demonstrated that its globule size remained stable under the applied osmotic gradients. |
---|---|
ISSN: | 0749-1581 1097-458X |
DOI: | 10.1002/mrc.4840 |