Taurine Promotes Milk Synthesis via the GPR87-PI3K-SETD1A Signaling in BMECs

Taurine, a β-aminosulfonic acid, exerts many cellular physiological functions. It is still unknown whether taurine can regulate milk synthesis in the mammary gland. Therefore, in this study we investigated the effects and mechanism of taurine on milk synthesis in mammary epithelial cells (MECs). Bov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2019-02, Vol.67 (7), p.1927-1936
Hauptverfasser: Yu, Mengmeng, Wang, Yang, Wang, Zhe, Liu, Yanxu, Yu, Yang, Gao, Xuejun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taurine, a β-aminosulfonic acid, exerts many cellular physiological functions. It is still unknown whether taurine can regulate milk synthesis in the mammary gland. Therefore, in this study we investigated the effects and mechanism of taurine on milk synthesis in mammary epithelial cells (MECs). Bovine MECs (BMECs) cultured in FBS-free OPTI-MEMImedium were treated with taurine (0, 0.08, 0.16, 0.24, 0.32, and 0.4 mM). Taurine treatment led to increased milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c protein expression, in a dose-dependent manner, with an apparent maximum at 0.24 mM. Gene function study approaches revealed that the GPR87-PI3K-SETD1A signaling was required for taurine to increase the mTOR and SREBP-1c mRNA levels. Taurine stimulated GPR87 expression and cell membrane localization in a dose dependent manner, suggesting a sensing mechanism of GPR87 to extracellular taurine. Collectively, these data demonstrate that taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.8b06532