Evaluation of a Ferromagnetic Marker Technology for Intraoperative Localization of Nonpalpable Breast Lesions

The purpose of this study was to evaluate the magnetic occult lesion localization instrument (MOLLI) system that involves implantation of a small, ferromagnetic marker to guide surgical excision of nonpalpable breast lesions. Characterization of the system was undertaken as part of what is, to our k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of roentgenology (1976) 2019-04, Vol.212 (4), p.727-733
Hauptverfasser: Nicolae, Alexandru, Dillon, John, Semple, Mark, Hong, Nicole Look, Ravi, Ananth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to evaluate the magnetic occult lesion localization instrument (MOLLI) system that involves implantation of a small, ferromagnetic marker to guide surgical excision of nonpalpable breast lesions. Characterization of the system was undertaken as part of what is, to our knowledge, the first study to assess the MOLLI system. The MOLLI system consists of a handheld probe that can detect the position and distance of an implanted magnetic marker. The system presents the surgeon with an accurate assessment of lesion location and depth measurement for precise 3D localization. The marker is implanted under ultrasound or mammographic guidance at any time before the surgical procedure and requires no special precautions. Experimental analysis focused on characterization of the following aspects of the MOLLI system: visualization of the marker under imaging, 3D detection of the magnetic marker, spatial resolution of the probe to detect markers placed in close proximity, and the effect of signal interference on system performance. The MOLLI system can reliably detect mean (± SD) marker depths up to 53 ± 8.56 mm from the probe. Bracketing large lesions or localizing multiple lesions can be accomplished by placing markers as close as 10 mm apart, at depths of up to 42 mm. The biologically inert MOLLI marker is readily visible under ultrasound and mammographic guidance, and it is differentiable from radiologic clips. The effect of surgical instruments on MOLLI functioning is minimal and does not impact system accuracy or reliability. The MOLLI system offers an accurate and efficient alternative lesion localization method for nonpalpable breast lesions.
ISSN:0361-803X
1546-3141
DOI:10.2214/AJR.18.20195