Onsite quantifying electron donating capacity of dissolved organic matter
Electron donating capacity (EDC) of dissolved organic matter (DOM) impacts the redox behaviors of DOM in surface waters, groundwaters, wetlands, sediments and soils but lacks applicable onsite quantification methods. To address these disadvantages, a simple and portable device with pre-injected [2,2...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-04, Vol.662, p.57-64 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electron donating capacity (EDC) of dissolved organic matter (DOM) impacts the redox behaviors of DOM in surface waters, groundwaters, wetlands, sediments and soils but lacks applicable onsite quantification methods. To address these disadvantages, a simple and portable device with pre-injected [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid), ABTS·+] was developed that can be used for EDC onsite measurements of DOM in this work. The proposed device and method had better limits of quantification of Trolox (0.2 nmol) and more flexible DOC concentration requirement of 0.5–20 mg L−1 than that of flow injection analysis (FIA) (5–10 mg L−1) or mediated electrochemical oxidation (MEO) (>20 mg L−1). The proposed device and method greatly reduced the preparation and measurement time for sample tests compared to MEO or FIA method, enabling time-efficient EDC determination for large amount of samples. Meanwhile, the proposed device presented comparable accuracy with established MEO method when quantifying the EDCs of 7 standard humic and fulvic acids. Humic acids with higher molecular weight (MW) ( |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.01.178 |