Cooperative Au/Ag Dual-Catalyzed Cross-Dehydrogenative Biaryl Coupling: Reaction Development and Mechanistic Insight
An operationally simple and highly selective Au/Ag bimetallic-catalyzed cross-dehydrogenative biaryl coupling between pyrazoles and fluoroarenes has been developed. With this reaction, a wide range of biheteroaryl products can be obtained in moderate to good yields with excellent functional group co...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-02, Vol.141 (7), p.3187-3197 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An operationally simple and highly selective Au/Ag bimetallic-catalyzed cross-dehydrogenative biaryl coupling between pyrazoles and fluoroarenes has been developed. With this reaction, a wide range of biheteroaryl products can be obtained in moderate to good yields with excellent functional group compatibility. The exact role of silver salts, previously overlooked in most gold-catalyzed transformations, has been carefully investigated in this biaryl coupling. Insightful experimental and theoretical studies indicate that silver acetate is the actual catalyst for C–H activation of electron-poor arenes, rather than the previously reported gold(I)-catalyzed process. An unprecedented Au/Ag dual catalysis is proposed, in which silver(I) is responsible for the activation of electron-poor fluoroarenes via a concerted metalation–deprotonation pathway, and gold(III) is responsible for the activation of electron-rich pyrazoles via an electrophilic aromatic substitution process. Kinetic studies reveal that ArFnAu(III)-mediated C–H activation of pyrazoles is most likely the rate-limiting step. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b12929 |