Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum
Intact glenoid labrum is one of passive stabilizer for glenohumeral joint, which have various stiffness at different region. The aim of this study is to develop new artificial glenoid labrum from Polyvinyl Alcohol (PVA) hydrogel, which known as good biomaterial due to its biocompatibility and abilit...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2019-03, Vol.91, p.406-415 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intact glenoid labrum is one of passive stabilizer for glenohumeral joint, which have various stiffness at different region. The aim of this study is to develop new artificial glenoid labrum from Polyvinyl Alcohol (PVA) hydrogel, which known as good biomaterial due to its biocompatibility and ability to tailor its modulus. PVA hydrogel was formed using freeze-thaw (FT) method and the stiffness of PVA was controlled by manipulating the concentration of PVA and number of FT cycles. Then, the gradual stiffness was formed using simple diffusion method by introducing the pre-freeze-and-thaw steps. The results showed 20% PVA with three FT cycles suit to highest stiffness of glenoid labrum while 10% PVA with three FT cycles suit to lowest stiffness of glenoid labrum. The functionally graded PVA hydrogel was then developed using the same method by diffusing two mixture (20% PVA and 10% PVA). Mechanical compression test showed, the highest modulus (0.41 MPa) found at the 20% PVA region and lowest modulus (0.1 MPa) found at 10% PVA region. While, at intermediate region, the compressive modulus was in between 20% and 10%, 0.2 MPa. The existence of gradual stiffness was further prove by checking crystallinity of material at each region using Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). Microstructure of material was obtained from Scanning Electron Microscopy (SEM). This functionally graded PVA hydrogel also able to reduce about 51% of stress at glenoid implant and up to 17% for micromotion at the interfaces. Existence of artificial glenoid labrum could minimize the occurrence of glenoid component loosening. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2018.12.033 |