Interlocked Graphene Oxide Provides Narrow Channels for Effective Water Desalination through Forward Osmosis

Unique two-dimensional water channels formed by stacked graphene oxide (GO) sheets that are “nonleachable” and nonswellable can show great potential for water remediation. The interlayer spacing controls the solute or ion sieving and plays a crucial role in water transport in GO-based membranes. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-02, Vol.11 (7), p.7566-7575
Hauptverfasser: Padmavathy, Nagarajan, Behera, Shasanka Sekhar, Pathan, Shabnam, Das Ghosh, Lopamudra, Bose, Suryasarathi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unique two-dimensional water channels formed by stacked graphene oxide (GO) sheets that are “nonleachable” and nonswellable can show great potential for water remediation. The interlayer spacing controls the solute or ion sieving and plays a crucial role in water transport in GO-based membranes. Herein, the sub-nano-channels adjacent to the sheets are altered by either ionic or covalent cross-linking using magnesium hydroxide (Mg­(OH)2) and graphene oxide quantum dots (GQDs) (named GOM and G-GQD), respectively. In aqueous solution, these cross-linkers prevent the GO sheets from swelling and precisely control the interlayer spacing required for water permeation. In addition, these narrowed GO sheets facilitate significant improvement in salt rejection of a divalent ion by forward osmosis and selective dye rejection and are resistive toward biofouling and bacterial growth. The cross-linked GO membranes are robust enough to withstand strong cross-flow velocity and aided in unimpeded water transport through the nanochannels. Among the membranes, the G-GQD membranes (G-GQD) show better antifouling characteristics, dye separation performance over 95–97% for various dyes, divalent ion rejection by 97%, and no cytotoxicity against HaCaT cells as compared with other GO membranes. Our findings on interlocking the domains of nanoslits of the GO structure by small ecofriendly molecules portray these materials as potential candidates for water separation applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b20598