Multi-material Ceramic-Based Components – Additive Manufacturing of Black-and-white Zirconia Components by Thermoplastic 3D-Printing (CerAM - T3DP)
To combine the benefits of Additive Manufacturing (AM) with the benefits of Functionally Graded Materials (FGM) to ceramic-based 4D components (three dimensions for the geometry and one degree of freedom concerning the material properties at each position) the Thermoplastic 3D-Printing (CerAM - T3DP...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2019-01 (143) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To combine the benefits of Additive Manufacturing (AM) with the benefits of Functionally Graded Materials (FGM) to ceramic-based 4D components (three dimensions for the geometry and one degree of freedom concerning the material properties at each position) the Thermoplastic 3D-Printing (CerAM - T3DP) was developed. It is a direct AM technology which allows the AM of multi-material components. To demonstrate the advantages of this technology black-and-white zirconia components were additively manufactured and co-sintered defect-free.
Two different pairs of black and white zirconia powders were used to prepare different thermoplastic suspensions. Appropriate dispensing parameters were investigated to manufacture single-material test components and adjusted for the additive manufacturing of multi-color zirconia components. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/57538 |