Deep learning wavefront sensing
We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can direct...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-01, Vol.27 (1), p.240-251 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can directly estimate Zernike coefficients of aberrated wavefronts from a single intensity image by using a convolutional neural network. We also demonstrated that the proposed deep learning wavefront sensor can be trained to estimate wavefront aberrations stimulated by a point source and even extended sources. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.000240 |