Deep learning wavefront sensing

We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-01, Vol.27 (1), p.240-251
Hauptverfasser: Nishizaki, Yohei, Valdivia, Matias, Horisaki, Ryoichi, Kitaguchi, Katsuhisa, Saito, Mamoru, Tanida, Jun, Vera, Esteban
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can directly estimate Zernike coefficients of aberrated wavefronts from a single intensity image by using a convolutional neural network. We also demonstrated that the proposed deep learning wavefront sensor can be trained to estimate wavefront aberrations stimulated by a point source and even extended sources.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.000240