Sphingosine-1-phosphate attenuates hypoxia/reoxygenation-induced cardiomyocyte injury via a mitochondrial pathway

Our previous study showed that Sphingosine-1-phosphate (S1P) could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury via the JAK-STAT pathway and maintain normal myocardial mitochondria integrity in vivo. However, it is not known yet whether S1P can relieve mitochondrial dysfunction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2019-02, Vol.510 (1), p.142-148
Hauptverfasser: Ke, Mengran, Tang, Qiqi, Pan, Ziang, Yin, Yongqiang, Zhang, Lizhi, Wen, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous study showed that Sphingosine-1-phosphate (S1P) could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury via the JAK-STAT pathway and maintain normal myocardial mitochondria integrity in vivo. However, it is not known yet whether S1P can relieve mitochondrial dysfunction via the mitochondrial apoptotic pathway and its detailed mechanism remains to be investigated. The aim of this study was to demonstrate the mitochondrial protective effects of S1P in a cardiomyocyte H/R injury model. In the present study, we established a H/R model in H9c2 cells. Cell viability was determined by the MTT assay, and apoptosis was evaluated by annexin V-FITC/PI staining. Mitochondrial calcium ion concentration, mitochondrial membrane potential (ΔΨm), opening of the mitochondrial permeability transition pore (mPTP), and release of cytochrome C were detected by laser confocal microscopy. The results showed that S1P inhibited the decrease in cell viability induced by H/R injury and reduced apoptosis. Confocal microscopy showed that S1P prevented loss of ΔΨm, relieved mitochondrial calcium overload, and inhibited opening of the mPTP and release of cytochrome C. The STAT3 inhibitor STATTIC can reverse the antiapoptotic effects of S1P and block the effect of S1P on mitochondria. Taken together, our results indicate that S1P protects cardiomyocytes against H/R injury by relieving mitochondrial dysfunction via the STAT3 pathway. •S1P protects cardiomyocytes against hypoxia/reoxygenation injury.•S1P relieves mitochondria dysfunction induced by H/R injury.•S1P protects cardiomyocytes against H/R injury by relieving mitochondrial dysfunction via the STAT3 pathway.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.01.067