Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide

Silicon nitride (Si3N4) is commonly employed to integrate third-order nonlinear optical processes on a chip. Its amorphous state, however, inhibits significant second-order nonlinear response. Recently, second-harmonic generation enhancement has been observed in Si3N4 waveguides after an all-optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2019-01, Vol.44 (1), p.106-109
Hauptverfasser: Grassani, Davide, Pfeiffer, Martin H P, Kippenberg, Tobias J, Brès, Camille-Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon nitride (Si3N4) is commonly employed to integrate third-order nonlinear optical processes on a chip. Its amorphous state, however, inhibits significant second-order nonlinear response. Recently, second-harmonic generation enhancement has been observed in Si3N4 waveguides after an all-optical poling (AOP) method. Here we demonstrate that, after AOP of a Si3N4 waveguide, for up to 2 W of coupled pump power, the same telecom-band signal undergoes larger interband wavelength conversion efficiency, based on sum-frequency generation (SFG), than intraband wavelength conversion, based on four-wave mixing. We also confirm the appearance of a phase-matching condition after AOP by measuring the conversion bandwidth and efficiency of SFG at different pump wavelengths.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.44.000106