Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene
High-quality graphene grown on metal-free substrates represents a vital milestone that provides an atomic clean interface and a complementary metal-oxide-semiconductor-compatible manufacturing process for electronic applications. We report a scalable approach to fabricate radio frequency field-effec...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-02, Vol.11 (6), p.6336-6343 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-quality graphene grown on metal-free substrates represents a vital milestone that provides an atomic clean interface and a complementary metal-oxide-semiconductor-compatible manufacturing process for electronic applications. We report a scalable approach to fabricate radio frequency field-effect transistors with a graphene channel grown directly on the sapphire substrate using the technique of remote-catalyzed chemical vapor deposition (CVD). A mushroom-shaped AlO x top gate is used to allow the self-aligned drain/source contacts, yielding remarkable increase of device transconductance and reduction of the associated parasitic resistance. The quality of thus-grown graphene is reflected in the high extrinsic cutoff frequency and maximum oscillation frequency of 10.1 and 5.6 GHz for the graphene channel of length 200 nm and width 80 μm, respectively, potentially comparable with those of transferred CVD graphene at the same channel length and holding promise for applications in high-speed wireless communications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b16957 |