Growth differentiation factor-15 regulates oxLDL-induced lipid homeostasis and autophagy in human macrophages
Growth differentiation factor-15 (GDF-15)/macrophage inhibitory cytokine-1 (MIC-1/GDF15) is associated with cardiovascular disease, inflammation and development of atherosclerosis and is highly expressed in macrophages (MΦ) of atherosclerotic lesions. Thus, we were interested in investigating the in...
Gespeichert in:
Veröffentlicht in: | Atherosclerosis 2019-02, Vol.281, p.128-136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growth differentiation factor-15 (GDF-15)/macrophage inhibitory cytokine-1 (MIC-1/GDF15) is associated with cardiovascular disease, inflammation and development of atherosclerosis and is highly expressed in macrophages (MΦ) of atherosclerotic lesions. Thus, we were interested in investigating the influence of GDF-15 in lipid homeostasis and autophagy in human MΦ during foam cell formation.
Oxidized-low density lipoprotein (50 μg/ml oxLDL), recombinant (r)GDF-15, transiently silenced GDF-15 (siGDF-15 MΦ), as well as with negative siRNA transfected (nsiGDF-15 MΦ) PMA-differentiated human THP-1 MΦ, were used to investigate the effects of GDF-15 on autophagic processes and lipid accumulation. Oil Red O staining revealed that rGDF-15 alone, but also in combination with oxLDL, significantly increased the lipid accumulation in THP-1 MΦ; a reverse effect was detected in siGDF-15 MΦ. Western-blot analyses and confocal laser scanning microscopy showed an increase of Atg5, Atg12/Atg5 protein complex and p62 protein in THP-1 MΦ co-incubated with rGDF-15 and oxLDL, as well as an increase of p62 accumulation compared to rGDF-15-treated MΦ. Vice versa, siGDF-15 MΦ showed a reduced p62 accumulation compared to nsiGDF-15 MΦ. The present study indicates that GDF-15, especially in combination with oxLDL, regulates the expression of autophagy-relevant proteins (p62, Atg5 and Atg12/Atg5 protein complex) and p62 accumulation in human MΦ.
GDF-15, in combination with oxLDL, impairs autophagic processes with consequences for lipid homeostasis in human MΦ, indicating its novel important pathophysiological role in atherosclerotic plaque development and progression.
[Display omitted]
•GDF-15 enhances oxLDL-independent lipid-accumulation in human MΦ.•GDF-15 silencing in human MΦ inhibits oxLDL-induced lipid-accumulation.•Incubation of human MΦ with rGDF-15/oxLDL increases ATG5, ATG12/ATG5-complex and p62.•GDF-15 silencing in human MΦ reduces ATG5, ATG12/ATG5-complex and p62.•GDF-15/oxLDL impairs autophagy with consequences for lipid homeostasis in human MΦ. |
---|---|
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2018.12.009 |