Crowder induced structural modulation of a multi-domain protein during its early stages of aggregation: A FRET-based and protein solvation study

Protein aggregation has been known for long to be the prime cause for several neurological disorders in human beings. While protein aggregation is itself a complex process, understanding the same in the context of a crowded cellular medium remains a challenge. In this work, using Förster resonance e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2019-04, Vol.127, p.563-574
Hauptverfasser: Karmakar, Sandip, Mukherjee, Sanjib K., Lal, Harish, Biswas, Saikat, Jani, Prangya Parimita, Chowdhury, Pramit K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein aggregation has been known for long to be the prime cause for several neurological disorders in human beings. While protein aggregation is itself a complex process, understanding the same in the context of a crowded cellular medium remains a challenge. In this work, using Förster resonance energy transfer (FRET) and solvation dynamics, we have tried to gain important insights into the structural rearrangements, during the early stages of aggregation of the multidomain protein bovine serum albumin (BSA) in presence of a range of synthetic macromolecular crowding agents. FRET studies show that there is an initial compaction in the domain size (domain I) at the early time points of incubation followed by an increase in the distance between the donor-acceptor pair. Analyses of the solvent correlation traces of BADAN (labeled at free Cys-34 in domain I of BSA) reveal that the same domain becomes rigid during the initial phase of the aggregation process subsequent to which there was a gradual increase in flexibility, the latter we propose being a necessary step that allows facile addition of more protein units.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.01.054