Leukamenin E, an ent-kaurane diterpenoid, is a novel and potential keratin intermediate filament inhibitor
Many ent-kaurane diterpenoids exhibit notable antitumor activity in vitro and in vivo, and some have been used as cancer therapeutic agents in China. In this study, we identified a novel molecular target of leukamenin E, an ent-kaurane diterpenoid, using an available whole-cell model in combination...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2019-03, Vol.846, p.86-99 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many ent-kaurane diterpenoids exhibit notable antitumor activity in vitro and in vivo, and some have been used as cancer therapeutic agents in China. In this study, we identified a novel molecular target of leukamenin E, an ent-kaurane diterpenoid, using an available whole-cell model in combination with immunofluorescence imaging and mass spectrometry (MS). The cytoskeleton-disrupting drugs cytochalasin B and colchicine caused the depolymerization of microfilaments and the collapse of microtubules and vimentin filaments, respectively, but had little effects on HepG2 and NCI-H1299 cells spreading as well as keratin filament (KF) reassembly, indicating that KFs are involved in cell spreading. Leukamenin E blocked HepG2 and NCI-H1299 cells adhesion/spreading and KF reassembly at subtoxic concentrations, indicating that leukamenin E may target KFs. Moreover, leukamenin E, at 3 μM for 24 h or 10 μM for 3 h, induced massive KF depolymerization in well-spread HepG2 and NCI-H1299 cells treated with/without cytochalasin B and colchicine. MS analysis indicated that leukamenin E could covalently modify amino acid residue(s) in a synthetic peptide based on keratin 1 and keratin 10 sequences, suggesting that covalent modification of the synthetic peptide by leukamenin E caused assembly inhibition or disrupted KF polymerization in HepG2 and NCI-H1299 cells. In addition, acridine orange/ethidium bromide staining and western blotting confirmed that there was no correlation between the KF-disrupting effects and apoptosis or keratin expression. Thus, we propose that leukamenin E is a novel inhibitor of KF assembly, and as such, can serve as a chemical probe of KF functions and a potential molecular target for ent-kaurane diterpenoid-based therapeutics.
[Display omitted]
•Used cytochalasin B and colchicine to develop an available whole-cell model.•Leukamenin E blocks KFs reassembly in spreading HepG2 and NCI-H1299 cells.•Leukamenin E induces a massive KFs depolymerization in spread HepG2 and NCI-H1299 cells.•Leukamenin E can covalently modify synthetic peptides. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2019.01.010 |