Zero-Index Bound States in the Continuum

Metamaterials with an effective zero refractive index associated with their electromagnetic response are sought for a number of applications in communications and nonlinear optics. A promising way that this can be achieved in all-dielectric photonic crystals is through the design of a Dirac cone at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-12, Vol.121 (26), p.263901-263901, Article 263901
Hauptverfasser: Minkov, Momchil, Williamson, Ian A D, Xiao, Meng, Fan, Shanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metamaterials with an effective zero refractive index associated with their electromagnetic response are sought for a number of applications in communications and nonlinear optics. A promising way that this can be achieved in all-dielectric photonic crystals is through the design of a Dirac cone at zero Bloch wave vector in the photonic band structure. In the optical frequency range, the natural way to implement this design is through the use of a photonic crystal slab. In the existing implementation, however, the zero-index photonic modes also radiate strongly into the environment due to intrinsic symmetry properties. This has resulted in large losses in recent experimental realizations of this zero-index paradigm. Here, we propose a photonic crystal slab with zero-index modes which are also symmetry-protected bound states in the continuum. Our approach thus eliminates the associated radiation loss. This could enable, for the first time, large-scale integration of zero-index materials in photonic devices.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.263901