Chronic Sleep Restriction Induces Aβ Accumulation by Disrupting the Balance of Aβ Production and Clearance in Rats
Amyloid-β (Aβ) plays an important role in Alzheimer’s disease (AD) pathogenesis, and growing evidence has shown that poor sleep quality is one of the risk factors for AD, but the mechanisms of sleep deprivation leading to AD have still not been fully demonstrated. In the present study, we used wild-...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2019-04, Vol.44 (4), p.859-873 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amyloid-β (Aβ) plays an important role in Alzheimer’s disease (AD) pathogenesis, and growing evidence has shown that poor sleep quality is one of the risk factors for AD, but the mechanisms of sleep deprivation leading to AD have still not been fully demonstrated. In the present study, we used wild-type (WT) rats to determine the effects of chronic sleep restriction (CSR) on Aβ accumulation. We found that CSR-21d rats had learning and memory functional decline in the Morris water maze (MWM) test. Meanwhile, Aβ
42
deposition in the hippocampus and the prefrontal cortex was high after a 21-day sleep restriction. Moreover, compared with the control rats, CSR rats had increased expression of β-site APP-cleaving enzyme 1 (BACE1) and sAPPβ and decreased sAPPα levels in both the hippocampus and the prefrontal cortex, and the BACE1 level was positively correlated with the Aβ
42
level. Additionally, in CSR-21d rats, low-density lipoprotein receptor-related protein 1 (LRP-1) levels were low, while receptor of advanced glycation end products (RAGE) levels were high in the hippocampus and the prefrontal cortex, and these transporters were significantly correlated with Aβ
42
levels. In addition, CSR-21d rats had decreased plasma Aβ
42
levels and soluble LRP1 (sLRP1) levels compared with the control rats. Altogether, this study demonstrated that 21 days of CSR could lead to brain Aβ accumulation in WT rats. The underlying mechanisms may be related to increased Aβ production via upregulation of the BACE1 pathway and disrupted Aβ clearance affecting brain and peripheral Aβ transport. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/s11064-019-02719-2 |