Luteal granulosa cells from natural cycles are more capable of maintaining their viability, steroidogenic activity and LH receptor expression than those of stimulated IVF cycles
Abstract STUDY QUESTION Are there any differences in the molecular characteristics of the luteal granulosa cells (GC) obtained from stimulated versus non-stimulated (natural) IVF cycles that may help explain the defective luteal phase in the former? SUMMARY ANSWER Luteal GC of stimulated IVF cycles,...
Gespeichert in:
Veröffentlicht in: | Human reproduction (Oxford) 2019-02, Vol.34 (2), p.345-355 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
STUDY QUESTION
Are there any differences in the molecular characteristics of the luteal granulosa cells (GC) obtained from stimulated versus non-stimulated (natural) IVF cycles that may help explain the defective luteal phase in the former?
SUMMARY ANSWER
Luteal GC of stimulated IVF cycles, particularly those of agonist-triggered antagonist cycles, are less viable ex vivo, express LH receptor and anti-apoptotic genes at lower levels, undergo apoptosis earlier and fail to maintain their estradiol (E2) and progesterone (P4) production in comparison to natural cycle GC.
WHAT IS KNOWN ALREADY
Luteal function is defective in stimulated IVF cycles, which necessitates P4 and/or hCG administration (known as luteal phase support) in order to improve clinical pregnancy rates and prevent miscarriage. The luteal phase becomes shorter and menstruation begins earlier than a natural cycle if a pregnancy cannot be achieved, indicative of early demise of corpus luteum (premature luteolysis). Supra-physiological levels of steroids produced by multiple corpora luteae in the stimulated IVF cycles are believed to inhibit LH release directly via negative feedback actions on the hypothalamic-pituitary-ovarian axis resulting in low circulating levels of LH and a defective luteal phase. We hypothesized that some defects in the viability and steroidogenic activity of the luteal GC of the stimulated IVF cycles might contribute to this defective luteal phase in comparison to natural cycle GC. This issue has not been studied in human before.
STUDY DESIGN, SIZE, DURATION
A comparative translational research study of ex vivo and in vitro models of luteal GC recovered from IVF patients undergoing natural versus stimulated IVF cycles was carried out. Luteinized GC were obtained from 154 IVF patients undergoing either natural (n = 22) or stimulated IVF cycles with recombinant FSH and GnRH agonist (long) (n = 44), or antagonist protocol triggered conventionally either with recombinant hCG (n = 46) or with a GnRH agonist (n = 42). GC were maintained in vitro for up to 6 days.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Cellular viability (YO-PRO-1 staining), the expression of the steroidogenic enzymes, pro-apoptotic genes [Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX) and Caspase-3 (CASP3)], anti-apoptotic genes [RAC-alpha serine/threonine-protein kinase (AKT-1) and Bcl-2-like protein 2 (BCL2-L2)], LH receptor, vascular endothelial growth factor (VEGF) (using |
---|---|
ISSN: | 0268-1161 1460-2350 |
DOI: | 10.1093/humrep/dey353 |