Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N‑Acetylglucosamine Production in Saccharomyces cerevisiae
Previously, the production of N-acetylglucosamine (GlcNAc) in Saccharomyces cerevisiae was improved by deletion of the genes encoding phosphofructokinase 2 (PFK-2) isoforms, which reduced the glycolytic flux by eliminating the pathway to produce fructose-2,6-bisphosphate, an allosteric activator of...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2018-12, Vol.66 (50), p.13191-13198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previously, the production of N-acetylglucosamine (GlcNAc) in Saccharomyces cerevisiae was improved by deletion of the genes encoding phosphofructokinase 2 (PFK-2) isoforms, which reduced the glycolytic flux by eliminating the pathway to produce fructose-2,6-bisphosphate, an allosteric activator of phosphofructokinase 1 (PFK-1). We further examined the effects of an additional reduction in glucose metabolic rate on N-acetylglucosamine production. Glucose uptake rate was lowered by expressing a gene encoding truncated glucose-sensing regulator (MTH1-ΔT ). In addition, catalytically dead Cas9 (dCas9) was introduced in order to down-regulate the expression levels of PFK-1 and pyruvate kinase-1 (Pyk1). Finally, the three strategies were introduced into S. cerevisiae strains in a combinatorial way; the strain containing all three modules resulted in the highest N-acetylglucosamine production yield. The results showed that the three modules cooperatively reduced the glucose metabolism and improved N-acetylglucosamine production up to 3.0 g/L in shake flask cultivation. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.8b04291 |