Characterization and biological properties of a novel synthesized silicon-substituted hydroxyapatite derived from eggshell

In the present study, the effect of adding different concentrations of silicon on physical, mechanical and biological properties of a synthesized aqueous precipitated eggshell-derived hydroxyapatite (e-HA) was evaluated. No secondary phases were detected by X-ray diffraction for the specimens e-HA a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of artificial organs 2019-02, Vol.42 (2), p.95-108
Hauptverfasser: Asadipour, Kamal, Nezafati, Nader, Nourbakhsh, Mohammad Sadegh, Hafezi-Ardakani, Masoud, Bohlooli, Saleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the effect of adding different concentrations of silicon on physical, mechanical and biological properties of a synthesized aqueous precipitated eggshell-derived hydroxyapatite (e-HA) was evaluated. No secondary phases were detected by X-ray diffraction for the specimens e-HA and e-HA containing silicon (Si-e-HAs) before and after heating at 1200°C. A reduction in the crystallite size and a-axis as well as an increase in c-axis was occurred when silicon replacement was happened in the structure of e-HA. The presence of Si-O vibrations and carbonate modes for Si-e-HAs was confirmed by Fourier transform infrared spectroscopy analysis. The range of porosity and density was varied from 25% and 2.4 g cm–3 to 7% and 2.8 g cm–3 for e-HA and Si-e-HAs. The values of Young’s modulus (E) and compressive strength were varied for e-HA and Si-e-HAs. The porous structure of the samples was reduced when they were heated as e-HA kept the porous microstructure containing some dense areas and Si-e-HAs possessed a rough surface including slight levels of microporosity. The acellular in vitro bioactivity represented different apatite morphologies for e-HA and Si-e-HAs. The G-292 osteoblastic cells were stretched well on the surface with polygon-shaped morphology for 0.8Si-e-HA after 7 days of culture. According to MTT assay and alkaline phosphatase test, the maximum cell activity was related to 0.8Si-e-HA. The minimum inhibitory concentration for 0.8Si-e-HA and e-HA was estimated to be about 3.2 and 4.4 mg/mL, respectively. In overall, the sample 0.8Si-e-HA exhibited a higher bacteriostatic effect than e-HA against gram-negative bacterial strain Escherichia coli.
ISSN:0391-3988
1724-6040
DOI:10.1177/0391398818806159