In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography

This work reports on the in-situ growth of a metal organic framework (MOF) composed of zinc(II), adeninate and biphenyldicarboxylate on the inner wall of a capillary, and the use of this MOF as a stationary phases in open-tubular capillary electrochromatography. The inner wall of a fused-silica capi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2019-02, Vol.186 (2), p.53-53, Article 53
Hauptverfasser: Li, Zhentao, Mao, Zhenkun, Chen, Zilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reports on the in-situ growth of a metal organic framework (MOF) composed of zinc(II), adeninate and biphenyldicarboxylate on the inner wall of a capillary, and the use of this MOF as a stationary phases in open-tubular capillary electrochromatography. The inner wall of a fused-silica capillary was first modified with 3-aminopropyltriethoxysilane to create surface amino sites, and then the MOF was synthesized by in-situ growth. The modified capillary was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The results proved the successful growth of the MOF. The resultant open-tubular column showed good separation selectivity towards neutral compounds, acidic and basic compounds including nonsteroidal anti-inflammatory drugs, sulfa drugs and small biomolecules. In addition, the modified column is stable and repeatable. The precisions (expressed as RSDs) of the retention time for intra-day ( n  = 5) and inter-day (n = 5) separations and between columns ( n  = 3) are less than 0.5, 1.6 and 4.7%, respectively. Conceivably, this new kind of MOF represents a most useful novel stationary phase in electrochromatographic separations. Graphical abstract Schematic presentation of the open-tubular column modified with bio-MOF-1 by in situ hydrothermal reaction with adeninate, Zn(II) and biphenyldicarboxylate for capillary electrochromatographic separations.
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-018-3115-9