Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil

Functional diversity covers diverse functional traits of microorganisms in an ecosystem. Thus, we hypothesized that it could play an important role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria. These bacteria have been considered as biofertilizer for sustainable agricultur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia microbiologica 2019-05, Vol.64 (3), p.461-470
Hauptverfasser: Chakraborty, Poulomi, Tribedi, Prosun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional diversity covers diverse functional traits of microorganisms in an ecosystem. Thus, we hypothesized that it could play an important role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria. These bacteria have been considered as biofertilizer for sustainable agriculture development. Soils were collected from different sites of agricultural field and performed several microbiological tests in which we observed considerable differences in heterotrophic microbial abundance and microbial activities among the microcosms. Functional diversity depends on both microbial richness and evenness. Based on the results of metabolic fingerprinting of the carbon sources of BiOLOG-ECO plates, richness and evenness was measured by determining Shannon diversity index and Gini coefficient, respectively. The results showed significant differences in both microbial richness and evenness, suggesting considerable variation of functional diversity among the microcosms. Thereafter, nitrogen-fixing and phosphate-solubilizing bacteria were isolated on Burk’s and Pikovskaya media, respectively. The results revealed considerable variation of both types of bacterial abundance among the microcosms. Microcosm (T2) showing the highest functional diversity houses the maximum numbers of nitrogen-fixing and phosphate-solubilizing bacteria. Similarly, the microcosm (T5) exhibiting the lowest functional diversity houses the minimum numbers of nitrogen-fixing and phosphate-solubilizing bacteria. Thus, a strong positive correlation was observed between functional diversity and both types of bacterial abundance among the soil samples. Higher richness and evenness lead to the development of increased functional diversity that facilitates to accommodate substantial numbers of nitrogen-fixing and phosphate-solubilizing bacteria in soil. Taken together, the results demonstrated that functional diversity plays an important role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil.
ISSN:0015-5632
1874-9356
DOI:10.1007/s12223-018-00672-1