Functional Repair Assay for the Diagnosis of Constitutional Mismatch Repair Deficiency From Non-Neoplastic Tissue
Constitutional mismatch repair deficiency (CMMRD) is a highly penetrant cancer predisposition syndrome caused by biallelic mutations in mismatch repair (MMR) genes. As several cancer syndromes are clinically similar, accurate diagnosis is critical to cancer screening and treatment. As genetic diagno...
Gespeichert in:
Veröffentlicht in: | Journal of clinical oncology 2019-02, Vol.37 (6), p.461-470 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constitutional mismatch repair deficiency (CMMRD) is a highly penetrant cancer predisposition syndrome caused by biallelic mutations in mismatch repair (MMR) genes. As several cancer syndromes are clinically similar, accurate diagnosis is critical to cancer screening and treatment. As genetic diagnosis is confounded by 15 or more pseudogenes and variants of uncertain significance, a robust diagnostic assay is urgently needed. We sought to determine whether an assay that directly measures MMR activity could accurately diagnose CMMRD.
In vitro MMR activity was quantified using a 3'-nicked G-T mismatched DNA substrate, which requires MSH2-MSH6 and MLH1-PMS2 for repair. We quantified MMR activity from 20 Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with confirmed CMMRD. We also tested 20 lymphoblastoid cell lines from patients who were suspected for CMMRD. We also characterized MMR activity from patients with neurofibromatosis type 1, Li-Fraumeni syndrome, polymerase proofreading-associated cancer syndrome, and Lynch syndrome.
All CMMRD cell lines had low MMR activity (n = 20; mean, 4.14 ± 1.56%) relative to controls (n = 6; mean, 44.00 ± 8.65%; P < .001). Repair was restored by complementation with the missing protein, which confirmed MMR deficiency. All cases of patients with suspected CMMRD were accurately diagnosed. Individuals with Lynch syndrome (n = 28), neurofibromatosis type 1 (n = 5), Li-Fraumeni syndrome (n = 5), and polymerase proofreading-associated cancer syndrome (n = 3) had MMR activity that was comparable to controls. To accelerate testing, we measured MMR activity directly from fresh lymphocytes, which yielded results in 8 days.
On the basis of the current data set, the in vitro G-T repair assay was able to diagnose CMMRD with 100% specificity and sensitivity. Rapid diagnosis before surgery in non-neoplastic tissues could speed proper therapeutic management. |
---|---|
ISSN: | 0732-183X 1527-7755 |
DOI: | 10.1200/JCO.18.00474 |