Three-Dimensional Shapes of Spinning Helium Nanodroplets

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-12, Vol.121 (25), p.255301-255301, Article 255301
Hauptverfasser: Langbehn, Bruno, Sander, Katharina, Ovcharenko, Yevheniy, Peltz, Christian, Clark, Andrew, Coreno, Marcello, Cucini, Riccardo, Drabbels, Marcel, Finetti, Paola, Di Fraia, Michele, Giannessi, Luca, Grazioli, Cesare, Iablonskyi, Denys, LaForge, Aaron C, Nishiyama, Toshiyuki, Oliver Álvarez de Lara, Verónica, Piseri, Paolo, Plekan, Oksana, Ueda, Kiyoshi, Zimmermann, Julian, Prince, Kevin C, Stienkemeier, Frank, Callegari, Carlo, Fennel, Thomas, Rupp, Daniela, Möller, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.255301