Accurate Structure-Based Coarse Graining Leads to Consistent Barrier-Crossing Dynamics
Structure-based coarse graining of molecular systems offers a systematic route to reproduce the many-body potential of mean force. Unfortunately, common strategies are inherently limited by the molecular mechanics force field employed. Here, we extend the concept of multisurface dynamics, initially...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-12, Vol.121 (25), p.256002-256002, Article 256002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structure-based coarse graining of molecular systems offers a systematic route to reproduce the many-body potential of mean force. Unfortunately, common strategies are inherently limited by the molecular mechanics force field employed. Here, we extend the concept of multisurface dynamics, initially developed to describe electronic transitions in chemical reactions, to accurately sample the conformational ensemble of a classical system in equilibrium. In analogy to describing different electronic configurations, a surface-hopping scheme couples distinct conformational basins beyond the additivity of the Hamiltonian. The incorporation of more surfaces leads systematically toward improved cross-correlations. The resulting models naturally achieve consistent long-time dynamics for systems governed by barrier-crossing events. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.256002 |