Quantum Non-Markovian Processes Break Conditional Past-Future Independence

For classical Markovian stochastic systems, past and future events become statistically independent when conditioned to a given state at the present time. Memory non-Markovian effects break this condition, inducing a nonvanishing conditional past-future correlation. Here, this classical memory indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-12, Vol.121 (24), p.240401-240401, Article 240401
1. Verfasser: Budini, Adrián A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For classical Markovian stochastic systems, past and future events become statistically independent when conditioned to a given state at the present time. Memory non-Markovian effects break this condition, inducing a nonvanishing conditional past-future correlation. Here, this classical memory indicator is extended to a quantum regime, which provides an operational definition of quantum non-Markovianity based on a minimal set of three time-ordered quantum system measurements and postselection. The detection of memory effects through the measurement scheme is univocally related to departures from Born-Markov and white noise approximations in quantum and classical environments, respectively.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.240401